
COMETE FRAMEWORK :
G.U.I. CONNECTED TO

MULTIPLE DATA SOURCES

Raphaël GIRARDOT : Synchrotron SOLEIL - FRANCE

On behalf of SOLEIL ICA team

Motivations of the

project

Motivations of the COMETE framework

• During the first years of SOLEIL construction, ICA team was focused on

developing GUI applications on top of TANGO devices for the Control

systems

• For this purpose, it was decided to use an existing framework: ATK

ATK Widget

ATK Source (Core)

Tango

Communication

Layer

Tango



Motivations of the COMETE framework

• Then the focus was set on providing data storage and management

applications for technical and scientific data.

COMETE project started in 2009

ATK Widget

ATK Source (Core)

Tango

Communication

Layer Tango

Oracle

Nexus / HDF5



• For the technical data the Tango Archiving service storing Tango

attributes in MYSQL or Oracle database

• For scientific data stored in NeXus/HDF5 files

~

Comete Architecture

COMETE Architecture : DataConnection Management

DataSources

Mediators

Targets

• The DataConnectionManagement module is a layer that allows connection

between two abstract entities, called “Targets” and “Data Sources”

• DataConnectionManagement implements a Mediator pattern , as well as

various other patterns such as Strategy, Observer

COMETE Architecture : DataConnection Management

• Mediator was chosen instead of MVC pattern because our two entities had to

be completely independent from each other, to allow easily adding new

widgets and sources

Target DataSource Mediator

COMETE Architecture : DataConnection Management

• We decided to use Targets instead of Widgets, because we also needed to

connect sources to non graphical targets (example: to custom processes)

Custom

Thread

DataSource Mediator

Chart

Targets

COMETE Architecture : Widgets

• COMETE Widgets are “Targets” specialization

• They musts comply with the interfaces described in CometeDefinition that

makes them connectable to any data source

• Comete Widgets are available in three implementations (Swing, SWT & AWT)

CometeDefinition

Comete
AWT

Comete
SWT

Comete
SWING

COMETE Architecture : Widgets

• Of course the COMETE framework allows adding easily new widgets.

• The current library of widgets can display:

 Scalar data (textfield, spinner, wheelswitch, slider, etc.)

 Spectrum data (chart viewer)

 Images (image viewer, tables)

COMETE Architecture : Widgets

• CometeSwing image viewer is based on ImageJ which allows using ImageJ

macros and ROI definitions within the component

COMETE Architecture : DataSources

• For better development separation, and in order to manage extra services

around sources (like polling), DataSources creation follow the factory design

pattern

Factory
DataSource

COMETE Architecture : DataSources

• When someone wants to add a new data source to Comete, this

person will implement a class that extends AbstractDataSource

• This guarantees that the COMETE mediator will be able to send data

to the widget and vice-versa

• The developer will also make the factory (IDataSourceFactory) that

handles sources production and data refreshment (if any)

• Today the following data sources are available within the COMETE

framework:

• A TANGO implementation to access Control System data

• A NeXus implementation to access scientific data from data

reduction applications.

• A first SQL implementation to access technical data produced by

the Tango Archiving system

COMETE Architecture : CometeBox

• The CometeBox module aims to simplify the use of COMETE for

developers who intend to use the IDataSourceFactory

• When you want to connect a target to some source produced by an

IDataSourceFactory, you have to do following steps:

• Instantiate your target

• Instantiate your mediator

• Instantiate your IDataSourceFactory

• Instantiate a key

• Ask your IDataSourceFactory to produce your source from this key

• Ask your mediator to connect your source to your target

• And of course, this allows accessing only 1 data.

COMETE Architecture : CometeBox

• CometeBox simplifies this access.

• It also offers the possibility to automatically connect your target to

some meta-data around your source (for example, a state or quality

concerning your source)

• To connect your target to a source and all its meta-data, you have to

do following steps:

• Instantiate your target

• Instantiate your CometeBox

• Instantiate a key

• Ask your CometeBox to connect your target to your key

Use cases

Use cases : Connexion to a tango attribute

Case 1: Without CometeBox Case 2: With CometeBox

TextField field = new TextField();

StringMediator mediator = new StringMediator();

TangoDataSourceFactory factory = new

TangoDataSourceFactory();

TangoKey key = new TangoKey();

TangoKeyTool.registerAttribute(«tango/tangotest/1

/string_scalar», key);

mediator.addLink(field,

factory.createDataSouce(key));

[...]

TextField field = new TextField();

StringScalarBox box = new StringScalarBox();

TangoKey key = new TangoKey();

TangoKeyTool.registerAttribute(«tango/tangot

est/1/string_scalar», key);

box.connectWidget(field,key);

[...]

Use cases : Connexion to multiple sources

• A typical use case is to connect the same chart to both a tango and a NeXus

source, in order to superpose spectrums from both sources

Data Source

CometeBox

Widgets Chart

Mediator

Tango NeXus

• This use case can be illustrated by following code:

Chart chart = new Chart();

ChartBox box = new ChartBox();

TangoKey tKey = new TangoKey();

TangoKeyTool.registerAttribute(«my/tango/device/myAttribute», tKey);

box.connectWidget(chart, tKey);

NexusKey nxKey = new NexusKey();

NexusKeyTool.registerDataSet(nxKey, filePath, datasetPath);

box.connectWidget(chart, nxKey);

[...]

Use cases : Chart connected to multiple sources

Conclusion

COMETE Framework : Summary

COMETE is the result of about 10 years of experience on GUI

applications at SOLEIL.

It is now a mature and powerful framework widely and daily used by

our developers

• The library of available GUI components is very rich

• Its architecture is adaptable in many contexts and other GUI

frameworks

SOLEIL is open to collaborations on the project:

• With contributors (new widgets, new data sources, data services,

etc…)

• With users, making feedback on their use and needs.

Questions ?

comete@synchrotron-soleil.fr

