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Motivations of the COMETE framework  

• During the first years of SOLEIL construction, ICA team was focused on 

developing GUI applications on top of TANGO devices for the Control 

systems 

• For this purpose, it was decided to use an existing framework: ATK 
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Motivations of the COMETE framework  

• Then the focus was set on providing data storage and management 

applications for technical and scientific data.  

COMETE project started in 2009 
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• For the technical data the Tango Archiving service storing Tango 

attributes in MYSQL or Oracle database 

• For scientific data stored in NeXus/HDF5 files 
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Comete Architecture  



COMETE Architecture : DataConnection Management 
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• The DataConnectionManagement module is a layer that allows connection 

between two abstract entities, called “Targets” and “Data Sources” 

• DataConnectionManagement implements a Mediator pattern , as well as 

various other patterns such as Strategy, Observer 



COMETE Architecture : DataConnection Management 

• Mediator was chosen instead of MVC pattern because our two entities had to 

be completely independent from each other, to allow easily adding new 

widgets and sources 
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COMETE Architecture : DataConnection Management 

• We decided to use Targets instead of Widgets, because we also needed to 

connect sources to non graphical targets (example: to custom processes) 
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COMETE Architecture : Widgets 

 
 

• COMETE Widgets are “Targets” specialization 

• They musts  comply with the interfaces described in CometeDefinition that 

makes them connectable to any data source 

• Comete Widgets are available in three implementations (Swing, SWT & AWT) 
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COMETE Architecture : Widgets 

 
 

• Of course the COMETE framework allows adding easily new widgets.  

• The current library of widgets can display: 

 Scalar data (textfield, spinner, wheelswitch, slider, etc.) 

 Spectrum data (chart viewer) 

 Images (image viewer, tables) 



COMETE Architecture : Widgets 

 
 

• CometeSwing image viewer is based on ImageJ which allows using ImageJ 

macros and ROI definitions within the component 



COMETE Architecture : DataSources 

• For better development separation, and in order to manage extra services 

around sources (like polling), DataSources creation follow the factory design 

pattern 
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COMETE Architecture : DataSources 

 
 

• When someone wants to add a new data source to Comete, this 

person will implement a class that extends AbstractDataSource 

• This guarantees that the COMETE mediator will be able to send data 

to the widget and vice-versa 

• The developer will also make the factory (IDataSourceFactory) that 

handles sources production and data refreshment (if any) 

 

• Today the following data sources are available within the COMETE 

framework: 

• A TANGO implementation to access Control System data  

• A NeXus implementation to access scientific data from data 

reduction applications. 

• A first SQL implementation to access technical data produced by 

the Tango Archiving system 



COMETE Architecture : CometeBox 

 
 

• The CometeBox module aims to simplify the use of COMETE for 

developers who intend to use the IDataSourceFactory 

• When you want to connect a target to some source produced by an 

IDataSourceFactory, you have to do following steps: 

• Instantiate your target 

• Instantiate your mediator 

• Instantiate your IDataSourceFactory 

• Instantiate a key  

• Ask your IDataSourceFactory to produce your source from this key 

• Ask your mediator to connect your source to your target 

• And of course, this allows accessing only 1 data. 



COMETE Architecture : CometeBox 

 
 

• CometeBox simplifies this access. 

• It also offers the possibility to automatically connect your target to 

some meta-data around your source (for example, a state or quality 

concerning your source) 

 

 

• To connect your target to a source and all its meta-data, you have to 

do following steps: 

• Instantiate your target 

• Instantiate your CometeBox 

• Instantiate a key  

• Ask your CometeBox to connect your target to your key 



 

 

Use cases 



Use cases : Connexion to a tango attribute 

Case 1: Without CometeBox Case 2: With CometeBox 

TextField field = new TextField(); 

StringMediator mediator = new StringMediator(); 

TangoDataSourceFactory factory = new 

TangoDataSourceFactory(); 

TangoKey key = new TangoKey(); 

TangoKeyTool.registerAttribute(«tango/tangotest/1

/string_scalar», key); 

mediator.addLink(field, 

factory.createDataSouce(key)); 

[...] 

TextField field = new TextField(); 

StringScalarBox box = new StringScalarBox(); 

TangoKey key = new TangoKey(); 

TangoKeyTool.registerAttribute(«tango/tangot

est/1/string_scalar», key); 

box.connectWidget(field,key); 

[...] 



Use cases : Connexion to multiple sources 

• A typical use case is to connect the same chart to both a tango and a NeXus 

source, in order to superpose spectrums from both sources 
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• This use case can be illustrated by following code: 

Chart chart = new Chart(); 

ChartBox box = new ChartBox(); 

TangoKey tKey = new TangoKey(); 

TangoKeyTool.registerAttribute(«my/tango/device/myAttribute», tKey); 

box.connectWidget(chart, tKey); 

NexusKey nxKey = new NexusKey(); 

NexusKeyTool.registerDataSet(nxKey, filePath, datasetPath); 

box.connectWidget(chart, nxKey); 

[...] 



Use cases : Chart connected to multiple sources 



 

 

Conclusion 



COMETE Framework : Summary 

 
 

COMETE is the result of about 10 years of experience on GUI 

applications at SOLEIL.  

It is now a mature and powerful framework widely and daily used by 

our developers 

• The library of available GUI components is very rich 

• Its architecture is adaptable in many contexts and other GUI 

frameworks 

 

 

SOLEIL is open to collaborations on the project:  

• With contributors (new widgets, new data sources, data services, 

etc…)  

• With users, making feedback on their use and needs. 



 

 

Questions ? 

comete@synchrotron-soleil.fr 


