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Qutline

® Big Data - more than a buzzword?

® new market for methods used in science
since decades (eg analytics)

® but - also new methods, which can be
applied in science

® Storage media developments

® New approaches and technologies



Big Data

® An estimated 35 zettabytes will be stored by 2020 (worldwide)
® growing exponentially
® Why! Because...
® ...itis technically possible
® Moore’s & Kryder’s law
® ...itis commercially relevant
® data volume is proportional to budget
® many new digital service providers

® and foremost(?) digital marketing
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http://information-technology.web.cern.ch/

Storage Media Hierarchy

Access time...
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Magnetic Disk

® Kryder's “law” (observation)

® magnetic disk areal storage
density doubles every |3 months

® compare to Moore’s “law’:
silicon performance doubles
“only” every 18 months

Capacuy (GB)

® Storage volume outperformed CPU

® in other words: stored data
volume is “cooling down”

® finding relevant data is getting
more important / difficult
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Volume and IOPS

® Storage access time is governed mainly
by two components

® seek time - positioning time of the
read head

® eg 3-10 ms (average)
® rotational delay of the disk

® eg 7200rpm disk: 4.2 ms

Disk Track Disk Track
® Both evolved due to mechanical
. . . e ” SOC‘O! o Tone 0, 15 sactons per track
constraints only within a “small
Q Zone 1, 12 sectors per track
range - O( I O) Q Tone 2, 10 secton per track
. Zoma 5, 8 secton per track
® ...only storage density has been e
. . Q Tona &, 6 400100 par trach
growing exponentially.
Geometrical Sector

Sector



Power Consumption

® Storage systems account often for
40% of power consumption

i
® magnetic disks have improved, but still ’3
show relatively low power efficiency )

(deﬁned as: power consumed per work done)
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® empirically:

4.

Power = Diameter*® x RPM%8 x Number of platters

=> disks shrink and don’t increase in rotational speed



Sequential vs random access

® How does the simple mechanics of rotating disks affect different access
patterns!?

® read time = seek time + rotational latency + transfer time
® sequential: few seeks and rotational waits with long transfers

® random: one seek and wait per I/O => O(10-100) slower

The secret to making disks Tape is Dead, Disk is Tape,
fast is to treat them like tape Flash is Disk, RAM Locality is King
(John Ousterhout) (Jim Gray)

® Gap between sequential and random access is large and increasing with density
® many concurrent sequential clients sharing storage create random pattern

® For many database and analysis applications only the lower random rate (or
|OPS) is relevant

® and single client benchmarks fail to deliver good performance estimates



Media Aggregation

® Goals:

® virtualise / cluster / federate many individual
drive units into a single larger logical unit

® provide more performance than a single
drive '

® provide a higher reliability than the one of a
single unit

® Redundant Array of Inexpensive Disks (RAID)
® sometimes inexpensive => independent

® initially implemented in dedicated disk
controllers and disk arrays - later in software



(Simple) RAID Levels

® RAID 0 - Striping (to n stripes)
® failure rate r and capacity c unchanged
® potentially: n ¢ disk throughput

® fault tolerance: none

e RAID I - Mirroring (to n copies)

® failure rate = |-(I-r)
(assuming independence!)

® capacity = l/nec
® potentially: n ¢ disk throughput

® fault tolerance = n -1 drives

RAID O
iy @
Al . A2
. A3 L A4
A5 L A6
. A7 . A8
~— ~
Disk O Disk 1

RAID 1
iy @
Al L Al
A2 A2
. A3 L A3
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Disk 1



RAID lIssues

® Assumption of independent drive errors does not hold
® eg during recovery

® drives often share also other common failure sources (power
supplies, fans, network etc)

® Drive capacity increase and localised (=long) recovery result in
probability for 2nd fault during recovery => data loss

® Most large scale systems departed from drive level RAID aggregation

® but use similar concepts on a different level
(eg file or chunk replication)



Flash: Basic Properties

® Density ~ Moore’s law
® no moving parts
® power efficient
® small form factor

® |imited endurance

® usually 5-100 k
erase/write cycles

® complex internal data
management and wear
levelling

Resolution (half pitch) “Shrink" [nm]

T | ) | ’ ) { ] 4 1 4 ' '
02 03 04 05 08 07 0B 09 10 11 12 13 14 15 16 17 18 19 20
Year of Production Start
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Flash: undesired
side-effects

asymmetric read/write performance

write amplification : factor between user
data and resulting flash memory changes

+ +
+
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block recycling : large internal trafic
limits client transfers
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SSD vs HDD

® SSD is less well defined and fragmented market
® large (factor 20) spread in performance and price
® Several orders of magnitude more |IOPS
® current consumer SSDs reach 100k IOPS
e Still O(10) higher price/GB
® Better power efficiency - in particular for idle storage
® Still a niche solution in the data centre context

® “Hot” transactional logs from databases or storage system
metadata

® BUT - all the mobile market has gone to flash memory

® and the magnetic disk market is consolidating...



Disk Market
Consolidation
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Indexed (fast) access to disk-resident data by key
® eg Bayer-Trees (B-Trees)
Structured Query Language

® exploit the constraint tabular data model

® generalised, logical development language

» Table name

All three main functions are under increasing I

) o , STUDENTS
pressure from simpler (= more specialised) solutions T L
o . , .
ACID scaling & transactional development skills Rolino| Name B
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applications or problems l

Attribute / Column



How to store/retrieve LHC data models?

A short history...

,\E: 15t Try - All data in an commercial Object Database (1995)
. — good match for complex data model and C++ language integration

—used at PB scale for BaBar experiment at SLAC

— but the market predicted by many analysts did not materialise!

2" Try - All data in a relational DB - object relational mapping (1999)
— Scale of PB deployment was far for from being proven

— Users code in C++ and rejected data model definition in SQL

Hybrid between RDBMS and structured files (from 2001 - today)

— Relational DBs for transactional management of meta data (TB scale)
* File/dataset meta data, conditions, calibration, provenance, work flow
* via DB abstraction (plugins: Oracle, MySQL, SQLite, Frontier/SQUID)
» see XLDB 2007 talk for details

Home-grown persistency framework ROOT ( 180PB )

Workiwide LHC Computing Grid

WLCGG

— Uses C++ “introspection” to store/retrieve networks of C++ objects

— Configurable column-store for efficient sparse reading

"o



\/ Processing a TTree

Begin() Hreisessi) Terminate()

- Create histograms - Finalize analysis
- Define output list (fiteing, ...)

Read needed parts only

TTree

Loop over events




~N

TTree - Clustering per Object

Tree entries
Streamer

Branches

Tree in memory

File

TTree = container for an arbitrary set of independent event trees




TTree - Clustering per Attribute

Streamer

File

tuneable: mix of row, column storage is possible within an object tree

15




Michael Hausenblas - Chief Data Engineer @ MapR

in his bog at https://medium.com/large-scale-data-processing/3da34e59f123

[...]

[ was flabbergasted and went like: OMG, there is a group of
people who have been doing this for almost 20 years now.
While I think the Google engineers deserve the credits for the
engineering innovations they introduced in their 2010 paper
on Dremel I also believe Fons and his team deserve at least the
same attention and credit.



http://research.google.com/pubs/pub36632.html
https://medium.com/@mhausenblas
https://medium.com/large-scale-data-processing/3da34e59f123
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. $ Deployment Simplifications and CERN| T

Development Targets Department

ﬂ/

a Follow trend in many other large storage systems
a > — server, controller, disk, file system failures need to be
ﬂ

7
£ 3

A

- —//

transparently absorbed by storage s/w
= — key functionality: file level replication and rebalancing

* Decouple h/w failures from data accessibility

— data stays available (for some time at reduced
performance) after a failure

— this could change current approach wrt h/w lifecycle

* Fine grained redundancy options on top of a
standardised h/w setup
— eg choose redundancy level (and hence the storage
overhead) for individual data rather than globally
« Support bulk deployment operations like retirement
and migration building on lower level rebalancing

T Department — eg retire hundreds of servers at end of warranty period

CH-1211 Genéve 23
Switzerland

www.cern.ch/it



Cloud Storage



CAP Theorem

® The CAP theorem (Brewer, 2000) states that any
networked shared-data system can have at most
two of three desirable properties

® consistency (C) equivalent to having a single up-
to-date copy of the data

® high availability (A) of data (incl. for update)
® tolerance to network partitions (P)

® “two of three” should rather be seen as exclusion
of all three at the same time

® This means
® eg distributed ACID databases can not scale

® but eventual consistency can

Consistency: Availability
ACID (Total
Transactions Redundancy)

Stne: 59 See §

State: §
oooco () ooo
Operationson §
State: 52
Time » O o o ®

Partition starts
<— Patticn mode —»

Figure 1. The state starts out consistent and remains so until a partition starts. To stay
available, both sides enter partition mode and continue to execute operations, creat-
Ing concurrent states S, and S, which are inconsistent. When the partition ends, the
truth becomes clear and partition recovery starts. During recovery, the system merges
S, and S, into a consistent state S’ and also compensates for any mistakes made during
the partition.



High

Price /TB

Low

® Map/Reduce

Cloud Storage

Price vs. Performance

: ® MemCache
SAN ® |
= ® Messaging

Enterprise |
saL e

® Queue

® Key-Value

|}
!
!
[
® Object |
!
[

Low

vV

Performance Migh

1. Legacy applications tried to eliminate faults to
achieve Consistency with physically
redundant scale up designs.

2. Cloud applications assume faults to achieve
Partitioning Tolerance with logically
redundant scale out design.

Cloud

Scale

Enterprise

Cloud storage breaks one-size-fits-all
model into optimized services

“AP" clouds spurn SANs

dmecacas) (mosar ) (faram)

e ugap” Chasm

The

BDB)!S Al’? SERYV El \')l F Qll)l

“CA" data centers embrace SANs

>

Parallelism Hgn

source: http: //robhlrschfeld com/category/development/cap-theorem/



http://robhirschfeld.com/category/development/cap-theorem/

Amazon Dynamo - Distributed
Hash Tables

Simple API Dynamo Concept

/ Key K
» Sharded by hash of the Key /,@\
(e
/
/

o Data = get (Key)
o put (Key, Data) \ Nodes B, C
\ i and D store
o delete (Key) @ @  keysin
: range (A,B)

including

source: James Hughes, CERN computing seminar



N*SQL

Orriginally “no SQL”’ but more recently “not only SQL”

® Databases which depart from relational model in several different ways

® departing from something does not yet define where you are going...

Physical data model

® hierarchical / object / document databases

® key-value stores

® column stores
Scalability / Availability

® scale-out instead of scale-up

® replication and fault-tolerance on node level instead of media level
Consistency

® eventual consistency instead of pessimistic/strict consistency



Physical Structure :
Row vs Column vs Document

® Traditional RDBMS - transactional write load (eg OLTP)

® one table row is changed / accessed together
® Analysis based on subset of attributes (eg data mining)

® columns are stored / compressed together

® performance advantage as less data is retrieved / transferred
® Access based on full, complex objects (document)

® avoids complex joins

® document store gives schema flexibility (no upfront schema)

® application is responsible to handle unexpected data!



Key-Value Stores

® Scale-out - VOLDEMORT (LinkedIn)

® Concept: Distributed, persistent, fault-tolerant hash table Project Voldemort

%" A distributed database.
® Transparent data partitioning allows for cluster expansion without R
rebalancing all data

® In-memory caching and durable storage system
® no additional caching tier required

e typically 10-20 kOperations/s

® Embedded / data structure server - REDIS é
® list, sets, hash-maps with atomic operations

® optional asynchronous persistency
® all data in-memory (no 1O on key-lookup)
® support publish/subscribe and large number of programming languages

® often used for statistic data, histories



Mixed Store

® key-value / document store

view defined by java script ®
focus on clustering

® scale-out with node count

® new node can be added online

consistent hashing (to partition the data)

® cach node picks up part/shard of total data

® three replicas by default with low
rebalancing load after node addition

all nodes in the cluster are the same
® all can be asked for any key

implemented in Erlang

rnaG

k



Document Databases

Scale-out example - CouchDB
® read/writes via disk
® JSON documents
All access via http/REST (get/put/post/delete)
® caching via reverse proxy (eg varnish)
® specialised on web applications
Application defined views
® ‘“schema” definition at query time
® supporting server side calculation
® map-reduce (in java script)
Replication - “offline by default”
® synchronise/replicate with data on other instances

® explicit conflict handling (via doc revision/identity)

IV

n

CouchDB

put .. ,VQ - ‘_erepluauon

- - Replication
O " Replication

Figure 4. Incremental replication between CouchDB nodes



Graph Databases

Neo4]

" the graph database
® Data model
® nodes, edges and attributes are first class Alroversal
objects
Idenfos navigates
® support for navigational and proximity queries
® avoids data duplication / joins of relational Pt e
network/graph representations T

e fully transactional (ACID)

® Typical applications el

® social networks

® geo-spacial

it



Hadoop

® Hadoop is more not just clustered storage

® integrated data & processing infrastructure with generalised resource
scheduling

® Parallel “local” access
® Map Reduce
e PIG/Latin
® Consistency constrained (scalable) database
® HBase
® Spark, Impala

® Significant interest for analytics from CERN IT and LHC experiments
® for analysis of infrastructure metrics & logs
® often unstructured and without upfront data model

® but also successfully to replace previous Oracle based operational log
(eg what happened to file xyz in the last two weeks?)



Hadoop Ecosystem Map  (always outdated)
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http://indoos.wordpress.com/2010/08/16/hadoop-ecosystem-world-map/

Does Kryder’s law still hold!?
What'’s next for disk storage!

100000 - areal density CAGR
Single particle
10000 - superparamagnetic limit
(estimated)
1000 -
E
S 100 -
@®
R
- T T — 100% I
10 “Charap’s limit P
[broken) ; ’/ + Inductive Writing/ GMR reading
1 :
29% ﬁ Inductive Writing/ MR reading
ORI ' : ' : ' '
=) N o) 2 A O N =" e 4\ %) N 0y ) A )

source: HDD Opportunities & Challenges, Now to 2020, Dave Anderson, Seagate



Shingled Recording

o Sh|ng|ed Media down track (direction of rotation)
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Impact of Shingled
Recording

® Gap between Read and Write performance increases
® need to check eg if meta data mixing with data is still feasible
® Market / Application Impact
® Will there be several types of disks?
® emulation of a traditional disk
® explicit band management by application
® constraint semantics (object disk)
® Open questions:

® which types will reach a market share & price that makes them
attractive for science applications ?

® how can the constrained semantics be mapped to science workflows?

® CERN openlab R&D area



« Each disk talks object storage

protocol over TCP

— replication/failover with other disks
in a networked disk cluster

— open access library for app

development

— Why now?

* shingled disks match constrained
object semantic: eg no updates

— Early stage with several open questions
« port price for disk network vs price gain by
reduced server/power cost?

 standardisation of protocol/semantics to allow
app development at low risk of vendor binding?

Object Disk

Seagate @

Server Application '_-]
_ Kinetic Library E
Application | '—'l
f ¢ D8 13
- &
Storage Server >
»\ e
J sAs |

Devices
SAS ,r‘.‘.v’l o

SMR, Mapping

Devices
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Storage Class Memory

Problem (& opportunity): The access-time gap between memory & storage

H‘__‘;‘,"ﬁ"’,‘e;,s}s time... Near-future

Decreasing J/C 0 1o f EGefcfafafkdkhL2jc:‘aéh‘e‘(<‘5ris)‘ i CPU

i Get data from DRAM/SCM (60ns)
et emory/storage gap

Read a FLASH device (20 us)

Write to FLASH, random (1ms)
Read or write to DISK (5ms)

oy

TAPE

Get data from TAPE (40s)

Research into new solid-state non-volatile memory candidates
— originally motivated by finding a “successor” for NAND Flash —
has opened up several interesting ways to change the memory/storage hierarchy...

1) Embedded Non-Volatile Memory — low-density, fast ON-chip NVM
2) Embedded Storage — low density, slower ON-chip storage

3) M-type Storage Class Memory — high-density, fast OFF- (or ON*)-chip NVM
4) S-type Storage Class Memory — high-density, very-near-ON-line storage

* ON-chip using 3-D packaging

Science & Technology — IBM Almaden Research Center Jan 2013



Storage Class

Storage-type vs. memory-type Storage Class Memory

Speed (Latency & Bandwidth)

S
>
o Storage-type Memory-type
5 S uses uses
njand B
®©
- (Write)
g S “Endurance
o

ns

ns

10

A

low co$t

The cost basis of semiconductor processing is well understood — the paths to higher density are
1) shrinking the minimum lithographic pitch F, and  2) storing more bits PER 4F2

Science & Technology — IBM Almaden Research Center Jan 2013




STT-MRAM
BL

High speed operation and non-volatility

Main contender for DRAM replacement

Eliminating DRAM refresh is a latency, bandwidth & power opportunity for
STT-MRAM

Complicated MTJ stacking structure, Yield challenge
High temperature process & Low resistance ratio
Margin Challenges, Soft errors

1x nm scaling and cost competitiveness??

Most mature amongst emerging memory candidates — low density PCM in
production for NOR replacement

Drift challenges with high density PCM, Stuck Faults — reliability challenge

Active Power, write current & latency — power/thermal challenges, too slow
to work as main memory

Scaling vs Thermal disturbance ??

Very simple materials and structure

Fast access, moderate endurance and low power

Various and unclear switching mechanisms

Large cell-to-cell variability

EUV needed vs 3D NAND

Stacking required for high density — manufacturing & yield challenges??

Flash Memory Summit 2013 © 2013 1BM Corporation



Summary

® The large data base area has seen a major differentiation from RDBMS to many,
simpler, more scalable and more specialised systems

® Driven by
® large available real memory
® more flexible scale-out as demand grows
® trading consistency for scalability
® more natural match to application data model

® Upcoming technology changes in rotational and direct access memory will further
blur the traditional split between database and other storage systems

® Application designers have a much larger toolbox available, but also need to be well
aware of their specific requirements and acceptable trade-offs in order to exploit
their advantages

® For larger organisations the need to consolidate centrally provided services will still
be an important factor in choosing a technology for longer term projects



