~ I ‘i
Inexpensive Scheduling in FP%‘??ZL |

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 1

What to expect

« Scheduling: executing planned events on time

 This Talk: a trick to schedule very cheaply in hardware
... by exploiting the real-time requirement

=5
15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 2

4 I f
Context: Globally known timﬁ‘;&‘!‘.ﬁ'.ji‘

« White Rabbit delivers accurate time (<1ns) to all controllers

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 4

| SN
Context: Execute actions on ti'q} j’,‘.

\

 When the scheduled time is reached, action occurs

R 12:00 —
93:;\543 ..D
. 000

DUMP BEAM!

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR

* Front-end Controllers (FECs)
actually look something like:

 and there are thousands...

« and they include FPGAs

== 1L
15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 6

(¢b)
-
(@))
(gv]
=

: Ramping a

Reality

» Real action execution looks something like

:C)

Rmp4 (FK

oL

g G§

Rmp2 (FK > 0)
NMI (N-1) - mal

e

0.1

#3

Rmp1

<N ob

< [0}
ratg—————— G
» 8¢

T

“somn 0%

= T=5a4 °*
o %

8joADpug

Youkg

puz~dope|4

Youls

puzTax3g

Youhs g 67 b uEsTRN
..ll!vlut_nﬂ.] Ly L peOT M
Lba"INg " dH

YouAg

MO RIS TIDG S |8 VRS NG JH
YouAg

©Q deid

dwing ax3g

dope|4

YOUMSTH |

YouAg

100Ul

velg dwey

les|pO1
HO weegy

PUzURYD Zd

ug weeddy
UYOIMS o L
Youhg
velg dwey
fes|y 91
HO weegy

pujueyy Zd

Apeay uj
iebBu] g
110 deud

peoT g
ApesyTIND

SUBLLTINM

uQ wesgy

.lnoﬁ_z:*
©(Q deigd

dwngu
108(uj s a7 Iu)
YUAs
HST WV SIS
daig-INn

e Q)
X " daug cs
fuidesg s s 9
S10AD uRIg

o deid
F Mo Tdeig

The Problem: Scheduling EveC’tk} \ L

« Main point: DM sends actions to take before FECs take them
.. slight problem: the actions do not arrive in order

 Problem to solve:
* receive actions at FECs out-of-order
» execute the actions in order and on time

2 FEC \
[.:[Unsorted actions Actions on-time

el

==
15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 8

I,In

But: Sorting?! w

* Scheduling is at least as hard as sorting
* Proof: schedule input #s as events and pop them in-order

« Sorting requires log(n) comparisons per element

« Can solve directly
« Heaps: priority queues / heap-sort
* Implemented in VHDL by M. Kreider (see his poster)

« But! There is a loop-hole in the sorting complexity proof:
* log(n) “comparisons” can be: read the bits of the timestamp
 This talk => fitting an elephant through that loop-hole

== 1L
15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 9

4 I "
. o W
Calendars: Mankind’s O(1) SCheG{H‘Pg”‘

* DM tells you to do something on March 12th?
 write that into your calendar

* Every day when you wake up

B

 check the calendar 1

Junsury 2014 Fehruary 2014 March 2004 April 2004
- - -, ~ g - o G W S o6 e et e e
T T
13 14 15 16 17 RN 00112 1M W15 16 17 1%
s H 2NN IR0 RO I R RGN H e us
I N YRS TR s 0N %8 R u
3l

* do whatever due that day

 Avoids log(n) cost? e]

LRI P30 L & £
WY e N2

0 n
Bits of timestamp = _EFEE® 2 FIXEA__ FEFES
index into calendar _ Spmber 314 Ocober WM Newmber 004 Decomber W4 _
N R 1B B b | 1 FEENE I
£ 9001 S B N4 58 7 U IR
AN RN (CRTRCRERT 1506 17 18 19
SRR IR IR R A RGN e -
TR 7 e TSI STREIEY

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR

Calendars: Snake Oil?

 Seems too easy! You cheated.

 Well, there are two caveats:

« Scheduling usually solves a harder problem
* Find the next task vs. find today’s task

Key

« The calendar is very big
2764 entries for FAIR

« To schedule a real-time accelerator we only need today’s task

== 1L
15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 11

L. |
l
Calendars: Empty holes Q‘J ,

!
1

4

« Calendar-based scheduling means skipping over holes
 time spent inspecting empty days is wasted time

Sun Mon Tue Wed Thu Fri Sat

Bucket-sort
Radix-sort
SW calendar queues

‘
all perform poorly
for non-uniform
schedule density .

Real-time / FPGA?
no extra cost

=5
15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 12

I,
Why checking today is enougﬁ” ':Q'

« Hardware is composed of busy wait loops
= must make a decision on every rising clock edge

\ are we there yet?
are we there yet?

are we there yet?

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 13

l
Why checking today is enough‘q ".&;'..

« Hardware is composed of busy wait loops
= must make a decision on every rising clock edge

\ are we there yet?
are we there yet?

are we there yet?

* If you know the next event is at time n
* You could ask, “Is t=n yet?” on every rising edge
« But, you might as well ask, “Is Calendar]t] set?”

= Knowing n does not make the problem easier!
GBS

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 14

The remaining problem

o Still: Calendars are too big!

« Small (<< 2”64 actions) original problem

« Expanded into giant (= 2*64 entries) calendar

Feb24 beep — o

March 24 April 2004

1 LI)

e — e Y e

RN (CNTRERERD 16 17 1%
IC L B (LR G ™ 182 8 88
ol ot el kit AL I

Mar 19 blink ——

Jan 8 on

Dec 25 off — >
Aug 11 flash R

Apr 5 echo

N OO o0 A W N -~ O

Oct12 ping 7 N EEEE
Mar 24 pong TR D M ® W | | w33

5 July 2014 August 2014
1 T A 1
® 01 92 a8 | 7 1 AP o) | | e T8
LA R R T CETars T m—— ey TR AN N
3 2 23 M % TR W N R
EIREED X% 7 BN
g oember 2014 December 2014
| P RS ® B P |
SHBBFF | T e
[CRTRCRERT 1506 17 18 |
R RN DR LA R N R 3330 M X% »
7] » > ¥ W 3

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR

The remaining problem

* A small improvement
* Don'’t copy action (big) into calendar entries
* Instead: just store a reference (small) to unsorted table

Jonmery WM Wyl _ MedM _ A
1 3 1 I 4
< . 7 -,l’ 9w N EEEEAEEEEEEEE R
0 Feb 24 beep 3 7 CRNEEAEND (CRITRERERT] 06 17 18
. I o I L B R LA B ™ 182 8 u 8
1 Mar19 Dblink < ettt i ettt ettt s P R
2 Jang ol s S ‘_’# maw mmLaMd. L JMmaM
2 T 4 5 & 1 2 3 4 1
3 DeC 25 Oﬁ: T % 8 140 s iz iy TR e 4% eTs
: R SR L T TS m—————— TR AN N
e SSTER TRV < a7 WL SIS T 5 L T L W e N
4 Aug 11 fIaSh _‘t il X » BN NN I XD
5 Aprd echo <« -~ T/—_
ke o September 3004 Ochaber 2004 Sipumber 2004 Docember 204
1 RN B DL | | P BRPRBP |
6 Oct12 ping e T — T
15 16 17 18 19 DM E e 1 (ORI 1506 17 18 |
7 Mar 24 pong TR DU E® | T mnanH | T mme»n | THnuE®
¥ W 2 R] NN » D v W 3

Pointer

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 16

The remaining problem

* The trick: just use a small calendar!
 only keep track of a few days after today

 Just one small problem: not all actions are listed in calendar!

Feb 24 beep Sun Mon Tue Wed Th o sat
Mar 19 blink 5

Jan8 on Today

Dec 25 off vartis

Aug 11 flash 1

Apr 5 echo 7

Mar 24 pong

Pointer

N OO o0 A W N -~ O

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 17

Democracy

 Politicians: only interested in problems < 4 years away

* Public: cares about all problems
= Regularly reminds politicians about unresolved problems

« Eventually every problem is < 4 years away
= Eventually the public reminds a politician currently in office

= Eventually a politician takes action on every problem

= Democracy works! (for all problems solvable in < 4 years)

== 1L
15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 18

Democratic Calendar Queu

e TwWO processes:
« Check today’s actions in calendar
« Check if next unsorted action is < 35 days away

0O Feb24 beep Sun Mon Tue Wed Th Fr sat
1 Mar 19 Dblink
2 Jan 8 on

<3 Dec25 off _— > today+35: no-op
4 Aug 11 flash Mar 18
5 Aprb echo

7 Mar24 pong
=5

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 19

Democratic Calendar Queu

e TwWO processes:
« Check today’s actions in calendar
« Check if next unsorted action is < 35 days away

O Feb 24 beep Sun Mon Tue Wed Thu Fri Sat
1 Mar 19 blink

2 Jan 8 on

3 Dec25 off BLINK!

Tod
<4 Aug 11___flash— > today+35: no-op Joday

5 Aprb echo

7 Mar24 pong
=5

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 20

B

Democratic Calendar Queueﬁk“z‘.ﬁf

e TwWO processes:
« Check today’s actions in calendar
« Check if next unsorted action is < 35 days away

Feb 24 beep Sun Mon Tue Wed Thu Fri Sat

Dec 25 off

Aug 11 flash -

<5 Aprb echo— < today+35! update!
6 Oct12 ping

7 Mar24 pong

0
1
2 Jan8 on
3
4

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 21

Democratic Calendar Queu

e TwWO processes:
« Check today’s actions in calendar
« Check if next unsorted action is < 35 days away

Feb 24 beep Sun Mon Tue Wed Thu Fri Sat

Jan 8 on
Dec 25 off

Today
Aug 11 flash Mar 21
Apr 5 echo

Oct 12 ping — > today+35: no-o
Mar 24 pong
== 1L

\lQ(ﬂ-wa—\O

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 22

Block Diagram

<—pop

Input ~—> Manager —push:?

<—store—

free ‘

fetch—>Dispatcher —> Output

@]
Scanner . ——soon—>

 For a proof of when the democratic approach never fails
* For an explanation of how the components fit together
... please read the full paper

ref—

walk
erase—

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 23

Conclusion

« Democratic scheduling can be done very cheaply
* O(1) area and time
* As simple as it gets: 2 parallel memory accesses/cycle
« Distribution of the actions in time is irrelevant
* No hard limit to problem size: could use external DDR

 Just one requirement:
* Execute today’s action, not the next action

« Which scheduling problem do you have?

== 1L
15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 24

15-17 October 2014 Wesley W. Terpstra, GSI/FAIR 25

