
Wesley W. Terpstra, GSI/FAIR15-17 October 2014 1

Inexpensive Scheduling in FPGAs

W. Terpstra, M. Kreider, D. Beck

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 2

What to expect

!
!
!

• Scheduling: executing planned events on time
!
!

• This Talk: a trick to schedule very cheaply in hardware
… by exploiting the real-time requirement

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 3

Context: Globally known time

• White Rabbit delivers accurate time (<1ns) to all controllers

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 4

Context: DM says what to do

• Data-Master says what to do and when to do it

Dump Beam @12:00

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 5

Context: Execute actions on time

• When the scheduled time is reached, action occurs

DUMP BEAM!

12:00

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 6

Reality: Front-end Controllers

!
• Front-end Controllers (FECs)

actually look something like:
!

• and there are thousands…
!

• and they include FPGAs

• •

•

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 7

Reality: Ramping a Magnet

!
• Real action execution looks something like

Wesley W. Terpstra, GSI/FAIR15-17 October 2014

!
• Main point: DM sends actions to take before FECs take them

… slight problem: the actions do not arrive in order
!

!
• Problem to solve:

• receive actions at FECs out-of-order
• execute the actions in order and on time

8

The Problem: Scheduling Events

Unsorted actions Actions on-time
FEC

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 9

But: Sorting?!

• Scheduling is at least as hard as sorting
• Proof: schedule input #s as events and pop them in-order
!

• Sorting requires log(n) comparisons per element
!

• Can solve directly
• Heaps: priority queues / heap-sort
• Implemented in VHDL by M. Kreider (see his poster)
!

• But! There is a loop-hole in the sorting complexity proof:
• log(n) “comparisons” can be: read the bits of the timestamp
• This talk => fitting an elephant through that loop-hole

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 10

Calendars: Mankind’s O(1) scheduling

• DM tells you to do something on March 12th?
• write that into your calendar
!

• Every day when you wake up
• check the calendar
• do whatever due that day
!

• Avoids log(n) cost?
Bits of timestamp =
index into calendar

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 11

Calendars: Snake Oil?

• Seems too easy! You cheated.
!

• Well, there are two caveats:
!

• Scheduling usually solves a harder problem
• Find the next task vs. find today’s task

!
• The calendar is very big

2^64 entries for FAIR
!

• To schedule a real-time accelerator we only need today’s task

Key

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 12

Calendars: Empty holes

• Calendar-based scheduling means skipping over holes
• time spent inspecting empty days is wasted time
!

• Bucket-sort
• Radix-sort
• SW calendar queues

all perform poorly
for non-uniform
schedule density

!
• Real-time / FPGA?

no extra cost

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 13

Why checking today is enough

• Hardware is composed of busy wait loops
➡ must make a decision on every rising clock edge
!
!
!

are we there yet?
are we there yet?

are we there yet?

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 14

Why checking today is enough

• Hardware is composed of busy wait loops
➡ must make a decision on every rising clock edge
!
!
!

are we there yet?
are we there yet?

are we there yet?
!

• If you know the next event is at time n
• You could ask, “Is t=n yet?” on every rising edge
• But, you might as well ask, “Is Calendar[t] set?”
➡ Knowing n does not make the problem easier!

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 15

The remaining problem

• Still: Calendars are too big!
• Small (<< 2^64 actions) original problem
• Expanded into giant (= 2^64 entries) calendar

0 Feb 24 beep
1 Mar 19 blink
2 Jan 8 on
3 Dec 25 off
4 Aug 11 flash
5 Apr 5 echo
6 Oct 12 ping
7 Mar 24 pong

Copy

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 16

The remaining problem

• A small improvement
• Don’t copy action (big) into calendar entries
• Instead: just store a reference (small) to unsorted table

0 Feb 24 beep
1 Mar 19 blink
2 Jan 8 on
3 Dec 25 off
4 Aug 11 flash
5 Apr 5 echo
6 Oct 12 ping
7 Mar 24 pong

Pointer

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 17

The remaining problem

• The trick: just use a small calendar!
• only keep track of a few days after today
!

• Just one small problem: not all actions are listed in calendar!

0 Feb 24 beep
1 Mar 19 blink
2 Jan 8 on
3 Dec 25 off
4 Aug 11 flash
5 Apr 5 echo
6 Oct 12 ping
7 Mar 24 pong

Pointer

Today
Mar 12

1
7

5

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 18

Democracy

!
• Politicians: only interested in problems < 4 years away
!

• Public: cares about all problems
➡ Regularly reminds politicians about unresolved problems
!

• Eventually every problem is < 4 years away
➡ Eventually the public reminds a politician currently in office
➡ Eventually a politician takes action on every problem
!

➡ Democracy works! (for all problems solvable in < 4 years)

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 19

Democratic Calendar Queues

• Two processes:
• Check today’s actions in calendar
• Check if next unsorted action is < 35 days away

0 Feb 24 beep
1 Mar 19 blink
2 Jan 8 on
3 Dec 25 off
4 Aug 11 flash
5 Apr 5 echo
6 Oct 12 ping
7 Mar 24 pong

Today
Mar 18

> today+35: no-op

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 20

Democratic Calendar Queues

• Two processes:
• Check today’s actions in calendar
• Check if next unsorted action is < 35 days away

0 Feb 24 beep
1 Mar 19 blink
2 Jan 8 on
3 Dec 25 off
4 Aug 11 flash
5 Apr 5 echo
6 Oct 12 ping
7 Mar 24 pong

Today
Mar 19> today+35: no-op

BLINK!

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 21

Democratic Calendar Queues

0 Feb 24 beep
1
2 Jan 8 on
3 Dec 25 off
4 Aug 11 flash
5 Apr 5 echo
6 Oct 12 ping
7 Mar 24 pong

Today
Mar 20

< today+35! update!

• Two processes:
• Check today’s actions in calendar
• Check if next unsorted action is < 35 days away

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 22

Democratic Calendar Queues

• Two processes:
• Check today’s actions in calendar
• Check if next unsorted action is < 35 days away

0 Feb 24 beep
1
2 Jan 8 on
3 Dec 25 off
4 Aug 11 flash
5 Apr 5 echo
6 Oct 12 ping
7 Mar 24 pong

Today
Mar 21

> today+35: no-op

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 23

Block Diagram

• For a proof of when the democratic approach never fails
• For an explanation of how the components fit together

… please read the full paper

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 24

Conclusion

!
• Democratic scheduling can be done very cheaply

• O(1) area and time
• As simple as it gets: 2 parallel memory accesses/cycle
• Distribution of the actions in time is irrelevant
• No hard limit to problem size: could use external DDR
!

• Just one requirement:
• Execute today’s action, not the next action
!

• Which scheduling problem do you have?

Wesley W. Terpstra, GSI/FAIR15-17 October 2014 25

