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What to expect

« Scheduling: executing planned events on time

 This Talk: a trick to schedule very cheaply in hardware
... by exploiting the real-time requirement
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Context: Globally known timﬁ‘;&‘!‘.ﬁ'.ji‘

« White Rabbit delivers accurate time (<1ns) to all controllers
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Context: Execute actions on ti'q} j’,‘.

\

 When the scheduled time is reached, action occurs

R 12:00 —
93:;\543 ..D
. 000

DUMP BEAM!
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* Front-end Controllers (FECs)
actually look something like:

 and there are thousands...

« and they include FPGAs

== 1L
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Reality

» Real action execution looks something like
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The Problem: Scheduling EveC’tk} \ L

« Main point: DM sends actions to take before FECs take them
.. slight problem: the actions do not arrive in order

 Problem to solve:
* receive actions at FECs out-of-order
» execute the actions in order and on time

2 FEC \
[.:[ Unsorted actions Actions on-time

el

==
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But: Sorting?! w

* Scheduling is at least as hard as sorting
* Proof: schedule input #s as events and pop them in-order

« Sorting requires log(n) comparisons per element

« Can solve directly
« Heaps: priority queues / heap-sort
* Implemented in VHDL by M. Kreider (see his poster)

« But! There is a loop-hole in the sorting complexity proof:
* log(n) “comparisons” can be: read the bits of the timestamp
 This talk => fitting an elephant through that loop-hole

== 1L
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Calendars: Mankind’s O(1) SCheG{H‘Pg”‘

* DM tells you to do something on March 12th?
 write that into your calendar

* Every day when you wake up

B

 check the calendar 1

Junsury 2014 Fehruary 2014 March 2004 April 2004
- - -, ~ g - o G W S o6 e et e e
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* do whatever due that day

 Avoids log(n) cost? e ]
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0 n
Bits of timestamp = _EFEE® 2 FIXEA__ FEFES
index into calendar _ Spmber 314 Ocober WM Newmber 004 Decomber W4 _
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TR 7 e TSI STREIEY
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Calendars: Snake Oil?

 Seems too easy! You cheated.

 Well, there are two caveats:

« Scheduling usually solves a harder problem
* Find the next task vs. find today’s task

Key

« The calendar is very big
2764 entries for FAIR

« To schedule a real-time accelerator we only need today’s task

== 1L
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Calendars: Empty holes Q‘J ,

!
1

4

« Calendar-based scheduling means skipping over holes
 time spent inspecting empty days is wasted time

Sun Mon Tue Wed Thu Fri Sat

Bucket-sort
Radix-sort
SW calendar queues

‘
all perform poorly
for non-uniform
schedule density .

Real-time / FPGA?
no extra cost

=5
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Why checking today is enougﬁ” ':Q'

« Hardware is composed of busy wait loops
= must make a decision on every rising clock edge

\ are we there yet?
are we there yet?

are we there yet?
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l
Why checking today is enough‘q ".&;'..

« Hardware is composed of busy wait loops
= must make a decision on every rising clock edge

\ are we there yet?
are we there yet?

are we there yet?

* If you know the next event is at time n
* You could ask, “Is t=n yet?” on every rising edge
« But, you might as well ask, “Is Calendar]t] set?”

= Knowing n does not make the problem easier!
GBS
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The remaining problem

o Still: Calendars are too big!

« Small (<< 2”64 actions) original problem

« Expanded into giant (= 2*64 entries) calendar
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The remaining problem

* A small improvement
* Don'’t copy action (big) into calendar entries
* Instead: just store a reference (small) to unsorted table
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Pointer
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The remaining problem

* The trick: just use a small calendar!
 only keep track of a few days after today

 Just one small problem: not all actions are listed in calendar!

Feb 24 beep Sun Mon Tue Wed Th o sat
Mar 19  blink 5

Jan8  on Today

Dec 25 off vartis

Aug 11 flash 1

Apr 5 echo 7

Mar 24 pong

Pointer

N OO o0 A W N -~ O
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Democracy

 Politicians: only interested in problems < 4 years away

* Public: cares about all problems
= Regularly reminds politicians about unresolved problems

« Eventually every problem is < 4 years away
= Eventually the public reminds a politician currently in office

= Eventually a politician takes action on every problem

= Democracy works! (for all problems solvable in < 4 years)

== 1L
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Democratic Calendar Queu

e TwWO processes:
« Check today’s actions in calendar
« Check if next unsorted action is < 35 days away

0O Feb24 beep Sun Mon Tue Wed Th Fr sat
1 Mar 19 Dblink
2 Jan 8 on

<3 Dec25 off _— > today+35: no-op
4 Aug 11 flash Mar 18
5 Aprb echo

7 Mar24 pong
=5
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Democratic Calendar Queu

e TwWO processes:
« Check today’s actions in calendar
« Check if next unsorted action is < 35 days away

O Feb 24 beep Sun Mon Tue Wed Thu Fri Sat
1 Mar 19 blink

2 Jan 8 on

3 Dec25 off BLINK!

Tod
<4 Aug 11___flash— > today+35: no-op Joday

5 Aprb echo

7 Mar24 pong
=5
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Democratic Calendar Queueﬁk“z‘.ﬁf

e TwWO processes:
« Check today’s actions in calendar
« Check if next unsorted action is < 35 days away

Feb 24 beep Sun Mon Tue Wed Thu Fri Sat

Dec 25 off

Aug 11 flash -

<5 Aprb echo— < today+35! update!
6 Oct12 ping

7 Mar24 pong

0
1
2 Jan8 on
3
4
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Democratic Calendar Queu

e TwWO processes:
« Check today’s actions in calendar
« Check if next unsorted action is < 35 days away

Feb 24 beep Sun Mon Tue Wed Thu Fri Sat

Jan 8 on
Dec 25 off

Today
Aug 11 flash Mar 21
Apr 5 echo

Oct 12 ping — > today+35: no-o
Mar 24 pong
== 1L
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Block Diagram

<—pop

Input ~—> Manager —push:?

<—store—

free ‘

fetch—>Dispatcher —>  Output

@ ]
Scanner . ——soon—>

 For a proof of when the democratic approach never fails
* For an explanation of how the components fit together
... please read the full paper

ref—

walk
erase—
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Conclusion

« Democratic scheduling can be done very cheaply
* O(1) area and time
* As simple as it gets: 2 parallel memory accesses/cycle
« Distribution of the actions in time is irrelevant
* No hard limit to problem size: could use external DDR

 Just one requirement:
* Execute today’s action, not the next action

« Which scheduling problem do you have?

== 1L
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