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INTRODUCTION

First results on the microwave properties of high-T_ oxide superconductors have been
reported two years ago at the last workshop on rf superconductivity by several groups
[1-5]. In the meantime. improved samples of these promising materials have been inves-
tigated more systematically at various laboratories. In general, there are two different
kinds of microwave measurements on high-T. superconductors. While the first ones
using ESR apparatuses are focusing on their magnetic behaviour by means of uncalibrated
microwave absorption studies, the second ones using specially designed set-ups are
interested in absolute values of the surface impedance. Despite of the interesting
information from the absorption studies about processes in granular superconductors
at high magnetic field levels [6], in this article only the latter type of measurements
are reviewed in order to judge about the applicability of high-T_ oxide superconductors
in microwave and electronic devices.

In the first chapter, some background information about the structural and transport
properties of the oxide superconductors is summarized. Emphasis wiil be given to their
highly anisotropic and granular features, which are most important for the observed
microwave properties. Since misalignment of grains and phase impurities especially at
grain boundaries limit the rf performance to a large extent, improved fabrication tech-
niques for the synthesis of polycrystalline bulk ceramic and textured thick films as well
as for singlecrystalline thin films will be shortly discussed in the next chapter. After
a comparative description of various microwave measurement techniques developed for
the investigation of samples of different shape and size. a survey of available microwave
data for the oxide superconductors is given. In the main chapter. the most interesting
results for the surface resistance as a function of temperature. frequency and rf magnetic
field and for the temperature dependence of the penetration depth mainly of YBa,Cu307
are presented and discussed. This will finally lead to conclusions about the present state
of the art and future prospects for microwave and electronic applications of the high-T_
oxide superconductors.
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STRUCTURAL AND TRANSPORT PROPERTIES

Since the discovery of oxide superconductors with a transition temperature T, above
30 K in 1986 (7], various oxide superconductors with perovskite ( CaTiOg )-like structure
have been found until now [8]. The highest T values occur for copper containing oxides,
which can be devided into structural classes with equivalent combinations of elements.
In Tab.1, the most famous representants of six structural classes are listed together
with their T and with the range of T values resulting for other members of the same
class. These classes are usually called the doped 2:1:4 (71 and the strongly oxygen-
deficient 1:2:3 [9.101, 1:2:4 [11.12], 2:2:0:1 [13], 2:2:1:2 [14.15) and 2:2:2:3 [16] structures.
Recently, a modified doped 2:1:4 structure with dominant electron instead of hole
conduction have been found [17). The main difference between all of these structures
consists in the number n of four-fold planar-coordinated CuO, layers per unit cell, in
which the normal and superconducting currents are believed to predominate and which
seems to be roughly correlated with T.. In Fig.1, the crystal structure of YBa,Cu3O;
having two of these layers is shown for example.

Tab. 1: Structural classes of copper-oxide superconductors with n CuO, layers.

Most Famous Representant Te Range n
Lajy g5Bag 15Cu0y4 35K | 10-40K | 1
YBasCuz05, 93 K | 60-96K | 2
YBasCuyOg 81K | 50-85K | 2
BioSroCuOg 20K | 10-90K | 1
BioSroCaCus0g 83 K <110K | 2
TioBasCasCuz0qg 122 K <125K | 3

Fig.1:

Crystal structure of YBa,CujOs.

The dimensions of the orthorhom-

bic unit-cell are about a=0.382nm,

b=0.389nm and ¢=1.167 nm [10,18].
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The thermodynamic phase diagrams of these at least quaternary compounds and their
subsystems are only partially known yet, but phase purity seems to be achievable only
for some oxides of the 1:2:3 and of the 2:2:1:2 structure. Any remaining impurity phase
like CuO, BaCuO, or YoBaCuOg, however, will contribute to residual microwave losses.
Moreover, the T of the oxide superconductors depends sensitively on the oxygen content
[19] and on metallic impurities [8). Contaminations and atomic disorder at the surface
should also enhance the surface resistance. Because of all these reasons, it is not

surprising that sharp rf transitions have been obtained so far only for YBa,CugzO; as
we will see in the main chapter.

Beside these speculative disadvantages, there are two common features of all known
oxide superconductors from which severe drawbacks concerning their applicability result.
First of all, the layered structure causes strongly anisotropic transport properties of
single crystals in the normal conducting [20] as well as in the superconducting state
[21). Secondly, the higher the T_ the larger the energy gap A, and the shorter the
coherence length € =hVvg/m Ay ( vp = Fermi velocity ) of a superconductor is expected.
Current estimates of g, for YBaoCuzO7 from dc magnetization measurements give aniso-
tropic values of about 1-2 nm in the ab-plane but only 0.2~0.4 nm in the c-direction [22].
Since the latter value is of similar magnitude as the distance between the Cu-O layers,
granular properties have to be considered for polycrystalline oxide superconductors [23].
Both features reduce the achievable critical current densities of YBasCujzO7 wires [24]
and exclude their application in magnets until now.

a) 300 l " ’ ' b ) 30 T T — T T 400
Y Ba,Cuy, 0, ,
400 YBa,Cu,0,_, -
single crystals <300
s 2r0, crucibles N - 20 —_
E 300 £ &F‘
i 2’ 4 200_&_
T 200k 1 & &
o v o b
L7 4100
100 |- P -
Vi |
’///:’, - J
0 Z-"" I 3 0 t 1 1 1 L
0 50 100 150 200 250 300 S0 100 150 200 250 300
T(K) T(K)

Fig. 2: Temperature dependence of the electrical resistivity of YBagCuz07 single crystals
in the ab-plane (a) and in the c-direction (b) grown under different conditions
in alumina (A1- A4) and zirconia (Z1-Z5) crucibles [25].

In Fig. 2 recent data on the anisotropic electrical resistivity o(T) of YBaysCugO7_g are
shown because of their importance for the surface impedance Zg in the normal state,
which is given in the regime of the normal skin effect by [26]

Zy=Rg+iwyggh =p/8 (1 +1i) = Joyye/2 (1+1) (1)

where Ry is the surface resistance, w=2nf is the angular frequency and A=23/2 is the
field penetration depth which is correlated to the skin depth §. Obviously, both Pab and
Pc depend strongly on the quality of the sample. For the metal-like Pab ™ T, the observed
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fluctuations are proposed to be caused by different carrier concentrations due to oxygen
disorder in the ab-planes, while especially substitutional Al impurities seem to produce
a semiconductor-like p.~ 1/T [25]. Nevertheless. even for the best samples there remains
a pap 60 uQdcm at 100 K, which is very high compared to that of copper, and an intrinsic
anisotropy of p./p,p, of about 60. According to (1), at 10 GHz and 100K values for Ry
between 0.15Q and 1.2Q and for § between 3.9um and 30 um result depending on the
orientation of the surface currents, respectively. Therefore, rather thick layers are needed
to measure Zg of the oxide superconductors above T, correctly.

Another important parameter for microwave applications at high field levels, which
should be also anisotropic, is the thermal conductivity. However, until now only mean
values for polycrystalline bulk samples of YBagCu3O;_5 have been measured as shown
in Fig. 3. The peak at 60 K indicates dominant phonon heat transport at all temperatures
below T [27). Moreover, porosity can reduce the whole A(T) curve by about one order
of magnitude [27,28]. Comparing the absolute values with those of Nb and NbgSn and
remembering local thermal instabilities in such cavities with low thermal conductivity
walls [29-31], thin films of some ym in thickness on substrates with high thermal
conductivity will be required for the thermal stabilization of indirectly cooled oxide
superconductors at high rf magnetic fields.
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Fig. 3: Temperature dependence of the thermal conductivity MT) of polycrystalline
YBayCu307_5 [27] in comparison with that of Nb [30, 321 and Nb3Sn [33].
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Tab. 2: Comparison of material parameters of superconductors which are important for
microwave applications.

Material Te |Ag7kTe|2Ao7h| Eg(O) | A(0) | woH(O) | ugHgKH(O)
[K1 CLTHz1|{Lnml|Lnm]1 LTI LT3
Pb 7.2 2.17 0.65 83 48 0.08 0.12
Nb 9.2 1.97 0.75 39 40 0.20 0.21
Nb3Sn 18 2.20 1.65 5.7 110 0.535 0.40
YBasCu307 | 93 | 1.5-4 6-15 |ab: <2 {1,,:140| 1.0-1.4 ]0.75-1.05
(preliminary) (anisotropic?) :<0.4l:770

In Tab. 2, preliminary values for some basic material parameters of superconducting
YBayCuzO; are compared to the much better known ones of Pb. Nb and Nb3Sn. The
quoted range of values for the reduced energy gap A,/kT_ and the gap frequency 2A,/h
corresponds to actual reviews about tunneling [34], infrared [35] and photoemission
£36] measurements, which are still controversial concerning a possible anisotropy of 4.
The magnetic field penetration depth A(0) has been determined on single crystals from
muon-spin-rotation [37] and dc magnetization [38] measurements consistently to be
about 140 nm for currents in the ab-plane, while the best evidence for the anisotropy
of Xy :Ap :xe =1.2:1:5.5 result from vortex-lattice decoration experiments [391. The
thermodynamic critical field H.(0) has been estimated from a review of specific heat
measurements [40]. Since the oxide superconductors are in the extreme typell regime,
the resulting intrinsic critical rf magnetic field will be given by the superheating field
Hgp =0.75H, [41]. In summary, the high-T_ oxide superconductors are promising for
electronic and microwave devices not only because of practical cryogenic reasons but also
because of their potential extension to higher frequencies and field levels of operation.
As an example, accelerator cavities with a maximum accelerating field of 250 MV/m,
which corresponds typically to a peak magnetic surface field of 1 T, can be envisaged.

Such a proposal would be unrealistic, however. as long as the granular properties
of the oxide superconductors cannot be eliminated. Recently, a phenomenological theory
for anisotropic granular superconductors has been developed [42]. Based on a network
of well-oriented Josephson-coupled grains ( see Fig.4 ), simple formulas for the effective
resistivity and penetration depth of the oxide superconductors have been derived. The
main ingredients of this theory are a straightforward London and Ginzburg-Landau theory
with an anisotropic effective mass tensor of the charge carriers and anisotropic inter-
granular Josephson currents I; =1I;, sinAy;, which oscillate in the i-direction with the
phase difference Ay; of the wave functions across the junction. The maximum Josephson
current I;, is much smaller than the intragrain current limit and is given by [43]

 AM(T)

29Rin

A(T)

liO(T) = tanhm (2)
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-

—T Model of Josephson-coupled blocks of size aj
an in a periodic array with lattice parameters a,
f [42]. In the three dimensional model, the area

| B of the junction in i-direction is A; = ai ap and

— ay — of the unit cell is A, = aj ay.

where R;, is the normal-state tunneling resistance across the junction. As the result
of this theory, the intrinsic intragranular values of the normal-state resistivity p;, and
of the penetration depth );, become somewhat enlarged to the following effective values:

°i = fio a7 * Rin g (3)
2 _ 2aiAi h A
S R T 'Y (4)

In the limiting case of strong Josephson-coupling between the grains, p; and }; are
dominated of course by the intrinsic values and remain independent quantities. In the
weak Josephson-coupling limit, however, the terms with the junction parameters R;,
and I;; become dominant for p; and ) leading with (2) to the correlation:

s A(T)

2.,
A 03 T oy A(T) cothzk_r (5)

If there is an intrinsic granularity of the high-T_ supercondcutors due to weak coupling
in the c-direction, a corresponding lower value of an anisotropic energy gap A(0) of
YBa,Cu307 can be estimated from (5) with measured A.(0) (Tab.2) and extrapolated
0c(0) (Fig. 2) values to be in the order of 7meV (= 0.9kT_). In any case, inhomogeneities
of real materials will cause currents to flow perpendicular to the surface, thereby
increasing A\ [44] and possibly introducing granular behaviour even for highly c-axis
oriented thin films.

Despite of the unsolved questions about the coupling mechanism and the calculation
of the intrinsic surface impedance of the oxide superconductors. the additional term
for Rg resulting for granular superconductors can be derived as well as for A [45]

2
f A
= w2 to j

Rs - 4eligRin A

(6)
where A\ is the second term in (4). In the weak-coupling limit )\ approaches >‘j' and
replacing ;) R, by A according to (2) leads to a simple correlation between the residual
surface resistance Rg(0) and X(0):

) U()ﬁ

RS(O) = @< 2 A0) 20) (7)
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Therefore, assuming for YBapCuzO; the same parameters as above, an intrinsic strong
granularity due to weak-coupling in the c-direction should limit the residual surface
resistance to values in the order of

R¢(0) = 0.57yQ - fIGHz12 (8)

These considerations are restricted, however, to low magnetic field levels because
of their strong influence on the weak links. Above a threshold surface field Hij which
corresponds to the critical Josephson current I;, across the junctions, decoupling of
the grains leads to additional microwave losses. Similar to the ac losses in the critical
flux state, these losses should increase linearly both with f and with the magnetic field
Hg applied to the surface [6, 461:

Rs _4upf 0147 fI[GHz) O

Hg ~ 3Jc ~ Jc[A/cm2] A/m

(9)

For typical values of the critical current density Jc of polycrystalline YBayCujzO7_g in
the order of 103 A/cm2 [24] and for 1GHz, the resulting Ry exceeds 1m() at a Hg of
about 6 A/m (= 7.54 uT). Therefore, oxide superconductors with low Jc limited by weak
links seem to be suited neither for magnet nor for accelerator applications.

SYNTHESIS OF BULK, THICK AND THIN FILMS

From the previous chapter it has become evident that a careful synthesis of the oxide
superconductors is required for good microwave properties. Therefore, well approved
fabrication techniques for polycrystalline bulk ceramic and thick layers as well as for
singlecrystalline thin films shall be mentioned here. The details of these descriptions
are restricted exemplarily to YBasCugO7_5 , which has been investigated most, but the
basic considerations can be applied to all oxide superconductors. The quality of the
resultant samples will be compared by standard characterization techniques like scanning
electron microscopy, X-ray diffractometry and resistively as well as inductively measured
transition curves and critical current densities.

Polycrystalline high-T_ superconductors are usually synthesized from metal oxides
and carbonates by solid-state reaction at high temperatures. In case of YBayCugO7_s,
at first a stoichiometric mixture of dried Yo03, BaCO3 and CuO of high purity (=99.99 %)
and small grain size (<10um) is ball milled for about one hour. Then the calcination
is performed in air or oxygen at temperatures between 910°C and 930°C for about 100 h.
Repeated interruption of the calcination for additional ball milling of the agglomerate
improves the homogeneity of the superconducting powder significantly [47]. After the
final ball milling, an average particle size of typically 5 ym resuits, which can be further
reduced with sieves or by sedimentation in organic liquids to less than 1ym. Care must
be taken of contaminations from mechanical abrasion or chemical reaction, respectively.
Bulk ceramic pellets or rings are pressed directly from this powder, while for wire or
thick layer fabrication organic additives are necessafy. Finally, these samples are sintered
at 900°C in air or at 920°C in pure oxygen for extended time periods up to 2 weeks.
For these sintering conditions, a sufficient grain growth with a minimum of impurity
phases like CuO, BaCu02 and YzBaCuOS is achieved [48]1. The phase transition from
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the insulating tetragonal (§=1) to the superconducting orthorhombic (§=0) structure
at temperatures near 700°C [49] can be completed in an O, atmosphere during the
naturally slow (2 4 h) cool-down of the furnace. After the shrinkage during the sintering,
more than 90 % of the theoretical density (6.3 g/cm3 ) is achievable for long-annealed
bulk ceramic YBayCugO7_5 samples.

For large microwave devices of complex shape like cavities, the coating of mechnically
rigid substrates with thick polycrystalline films of oxide superconductors is desirable.
Among the various coating techniques developed for this purpose, the electrophoretic
deposition of thick YBayCugO7_s films onto silver substrates [50] has given the best
results. Electrophoresis describes the migration of charged microscopic particles through
a stationary liquid under the influence of an electrostatic field. In an organic suspension
from calcined YBayCu3O7_5 powder and n-butanol, for example, a net positive charging
of the colloids leads to a cataphoresis as shown in Fig.5. The quality of the resultant
film can be improved by restriction on the smallest (<2um) particles due to sedimen-
tation for about 10 h. Such a suspension with remaining 10 g/1 leads at 45°C and 180 V/m
typically to a current density of 30 uA/cm2 and to a 5 yum thick layer within two minutes.
Moreover, a high degree of c-axis texturing perpendicular to the film surface can be
achieved if the deposition is performed in a strong magnetostatic field of 8 T [51,52].
Because of the shrinkage during sintering, stepwise deposition followed by short drying
and sintering for half an hour at 920°C is needed to obtain homogenous films of about
20 um in thickness, which are finally sintered under the same conditions as bulk samples.
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For planar microwave and electronic devices, epitaxially grown thin films on single-
crystalline dielectric substrates are most promising. The choice of suitable substrates
underlies three main requirements. First, their crystal structure has to match closely
that of the oxide superconductors to support epitaxial growth with c-axis perpendicular
to the surface. Secondly, their dielectric loss tangent has to be as small as possible
to avoid additional microwave losses which limit the performance of superconducting
devices. Last but not least, the substrates have to withstand the elevated temperatures
for the formation of oxide superconductors without too much interdiffusion, which can
lead to reduced film quality and enhanced dielectric losses. While the substrates listed
in Tab. 3 are more or less all approved concerning the first and third issue, the second
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Tab. 3:

Permittivity ¢, and typical tand of
dielectric substrates approved for
YBayCu30y7 thin films at T<300K

tans(T)l <1073] <1072] 102 |1073-1076|10~3-10"6 and microwave frequencies [331.

MgO | ZrO, | SrTiO; | LaGaO3 | LaAlOg

e | 10 | 25 [102-104| 25 16

requirement has enforced the search for alternative materials with much improved
microwave properties like LaGaOg [54] and LaAlOj [55]1 or for buffer layers on Al,O4
[53], which provides very low tan$ values but poisons YBagCu3O7. Moreover, the quality
of the thin films depends mainly on the in situ crystalline growth conditions, i.e. on
the chosen combination of substrate temperature and oxygen pressure [56], but less
on the specially used physical or chemical mass transport process as long as the correct
metallic stoichiometry is supplied. Deposition techniques which cannot be performed
under sufficient high oxygen pressure, however, require a post annealing of the film
in pure oxygen at temperatures around 900°C resulting in reduced film quality [57].
The best results have been achieved so far with the so-called laser ablation technique
[58,59]). In this easily reproducible and fast process, stoichiometric superconductor
targets are ablated by an UV excimer laser of short pulse length (<60ns) but high
pulse energy (<2 J) and repetition rate (<100 Hz ) as shown in Fig. 6. At typical operating
parameters of 2J/cm? energy density, 0.2 mbar Oy pressure and 750°C substrate tem-
perature, film growth rates up to 0.1 ym per minute are obtained on 10x10 mm2 substrates.
Scanning systems will be necessary for larger samples. Alternatively, the much slower
sputtering techniques can be also applied for large scale in situ film growth [571.
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GAS INLET (0,)

HEATER arTxé
ROTATING —~SUBSTRA
YBa,Cus0; HCLDER

TARGET

PYROMETER

Fig. 6:

Schematic setup for the deposition
of singlecrystalline oxide super-
conductors by laser ablation from

MOL;&S;IS AR stoichiometric targets [591.

The surface quality of YBayCu3O7_5 samples resulting for these different techniques
is compared in Fig.7. While polycrystalline bulk ceramic and untextured thick films
provide a porous surface with well separated grains (Fig.7a), c-axis texturing leads
to a platelet structure due to the merging of grains within the ab-plane (Fig.7b). In
contrast, singlecrystalline films exhibit a rather smooth surface often with particulate
inhomogeneities of um size (Fig.7c). Nevertheless, microprobe analysis yields within

SRF8t91D’€)1the correct stoichiometry for at least 95 % of the surface of all these samples.
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Fig.7:

Scanning electron micrographs of
the surface of an untextured (a)
and a c-axis textured electropho-
retically deposited thick film (b)
[51]1 and a laser ablazed thin film
(C) [601 of YBaZCu3O7_5

The X-ray diffraction patterns of the same YBayCu3gO;_s samples are displayed in
Fig. 8. In comparison, bulk ceramic and untextured thick films show much more peaks
and larger background intensity than c-axis textured thick and thin films. It is remarkable
that the dominant 013/103 peak typical for polycrystailine YBayCu307 can be suppressed
by about a factor of 50 for the thick film just by the alignment of the particles during
the electrophoresis in a strong magnetic field. However, only the singlecrystalline thin
film exhibits a clear pattern of sharp (00n) lines typical for complete c-axis orientation.
Moreover, all three patterns confirm an extensive phase purity of the samples.
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X-ray diffraction patterns for the
same YBayCugO7_g samples (a-c)

as in Fig. 7.

It is well known that inductively measured transition curves provide a much deeper
insight into the quality of samples than resistively measured ones. In inhomogenous
or granular material, a percolative superconducting path causes zero resistance already,
while impurities and weak links lead to an incomplete MeiBner effect and to a broadened
inductive transition with reduced T especially in high magnetic fields [24]. Accordingly,
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Fig. 9: Comparison of inductively measured transition curves of a) electrophoretically
deposited polycrystalline thick films without (A) and with (B) c-axis texturing
[51] and b) laser ablazed singlecrystalline thin films [61] of YBayCuj07_s.
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there is a significant difference in the magnetic shielding behaviour of bulk ceramic or
untextured thick films and c-axis textured ones as shown in Fig. 9a. Despite of similar
resistive T, values above 92K, a significant inductive T shift from 88 K for the untex-
tured to 91K for the textured thick film results due to the improved coupling between
the grains in the ab-plane [51]. Still narrower inductive transitions close to the optimum
T, of 93K have been obtained for epitaxially grown YBayCujzO7_g thin films on LaAlOg
(see Fig.9b). These observations can be explained by the distinction between inter-
granular and intragrain currents [23] which are both obliged to contribute to macroscopic
shielding currents. Direct measurements of the critical current density within single-
crystalline thin films [58, 591 and across single grain boundaries [62] have given at 4.2K
more than 10’ A/cm? for intragrain currents in favourable directions but only less than
104 A/cm2 for intergranular currents, both of which are further reduced by magnetic
fields. The resultant J. of polycrystalline material stays at 77 K and low magnetic fields
below 103A/cm?.

MICROWAVE MEASUREMENT TECHNIQUES

There are two important differences between dc or ac and microwave measurements.
First, all microwave losses are produced only in a very thin surface layer in the order
of magnitude of the magnetic field penetration depth )\ (see Tab.2). For homogenous
superconductors with a small coherence length, )\ is expected to be equal to the London
penetration depth [63], while for granular superconductors the effective A (4) should be
enlarged. Secondly, the shielding currents are forced to flow everywhere in this surface
layer, i.e. any remaining unpaired conduction electron will convert microwave into thermal
energy. Therefore, even homogenous superconductors provide losses due to thermally
broken electron pairs, the density of which is correlated to the energy gap. In a simple
two fluid model, scaling laws for the frequency and temperature dependence of the
intrinsic penetration depth and surface resistance can be derived [64]

MT) = 2(0)/ 41 - t4 (10)
Ry(0, T) ~ w? th(1-t2)/(1 - t+)2 with t = T/T, (1)

which have proven to be near T, good approximations for all classical superconductors.
At temperatures below 0.5 T, the existence of an energy gap A, leads to the madified
temperature dependencies [50]

AT) - A(0) ~ e Bo/kT (12)
Ry(w,T) = Aw?/T e Bo/kT (13)

Both formulas describe measured data of classical superconductors quite well as long
as an additional temperature independent residual surface resistance R4 is introduced,
which accounts for surface impurities and other imperfections like frozen-in magnetic
flux or grain boundaries as discussed before (7). For the absolute calculation of the
surface impedance of weak-coupling superconductors in the whole temperature range,
computer programs based on the BCS theory have been written [65, 66].
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For the determination of the surface impedance of oxide superconductors, various
measurement techniques are used which are optimized for different shapes and sizes
of samples. The very first experiments with small ceramic pellets of YBa,yCujzO7_5 were
performed in a rather simple way by putting them into a niobium host cavity [67]. This
method provides information about R(T) and \(T) above and just below T., and also
at temperatures below 4.2 K as long as the losses in the sample dominate the total losses.
Additional irreproducible losses due to contact currents have been successfully avoided
by an insulating Nb,Og layer [2]. A much improved technique which allows accurate
Z; measurements in the whole temperature range has been developed at Northeastern
{1,681 and Cornell 3,691 Universities. The main idea is to mount the sample on an
thermally insulated sapphire rod as shown in Fig. 10, so that its temperature can be varied
while the host cavity remains superconducting at 4.2 K. Meanwhile, similar cavities are
in operation also at other laboratories [70-72]. The useful frequency range for both types
of host cavities is restricted to about 1- 20 GHz because of sensitivity and size reasons,
respectively. Such apparatuses are well suited for the investigation of single crystals
of complicate shape and for small samples of singlecrystalline thin films on low-loss
dielectric substrates, if they are calibrated properly. Moreover, they allow to study the
dependence of Rg on the rf magnetic field strength up to the limit set by the super-
conducting host cavity.
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A much better defined test geometry can be realized with plane samples of any size
by replacing one endplate of copper or niobium cavities as shown in Fig.11. By means
of its partial geometric factor, which is calculable from the field configuration of the
testing mode, R (T) and X(T) result from two consecutive measurements of the quality
factor and the resonant frequency shift with and without the sample [50]. Such pill-box
cavities are usually designed for operation in the TEonp mode family to avoid currents
across the contact surface. The degeneracy with the TM,,, modes has to be splitted
sufficiently by mode traps. The main disadvantage of this measurement technique consists
in the common temperature of sample and cavity, which limits the sensitivity for the
losses in the sample to about 10 X of the total losses. Therefore, OFHC copper cavities
are preferred in the transition regime, while superconducting niobium cavities enable
higher accuracy and field levels only at temperatures below 4.2 K. Nevertheless, similar
cavities are used in most of the microwave laboratories. Two modifications have been
pursued to extend the bandwidth of such measurements. One is a movable piston for
a variable resonance frequency of the testing mode [73], and the other is a dielectric
loading of the cavity with sapphire for lower operating frequency with small samples
[741. Moreover, for the investigation of two plane samples a post dielectric resonator
without any side wall is sufficient [75]. For very thin films of oxide superconductors,
however, transmission losses must be taken into account to extract the true R; and X\
values from the measured surface impedance [76]. Alternatively, the transmission loss
of such films can be measured directly in a non-resonant way [77].
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For polycrystalline bulk ceramic and thick films, the full scope of cavity measurement
techniques can be applied of course. Typical examples for cavities built completely or
at least in their major part from oxide superconductors are shown in Fig. 12. Such cavities
are most sensitive for the temperature, frequency and field dependence of the surface
resistance but require the highest fabrication effort, too. At frequencies above 3 GHz,
pill-box cavities assembled from rings and discs are favoured, which are connected by
specially developed brazing agents to achieve high Q values in the TM,,, mode [78].
At lower frequencies, coaxial cavities using wire samples, which are directly cooled in
a quartz tube, are the best choice for easy multimode operation [4,80]1. As a mixture
of both, lumped circuits inside shielding cavities have been designed with pairs of wires
[81]1 or half cylinder shells [82]. For all these kinds of cavities, the use of silver parts
coated with oxide superconductors should be advantageous because of mechanical and
thermal stability reasons.
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The frequency range for the test of small thin-film samples on dielectric substrates
can be enormously enlarged by their patterning. In Fig. 13, six different planar microwave
line configurations are displayed. Obviously, fillings and substrates with low dielectric
losses are needed for high performance of superconducting devices. The attainable Q
values should be lower for the open structures A, B, E and F than for the closed ones
C and D due to radiation losses [83]. Using standard patterning methods, up to 30 cm
long transmission lines of complex shape have been successfully produced from high
quality YBayCujgO7_s films [84-88]. For some of these devices, the corresponding values
of Ry and )\ have been determined from the resonant frequencies and line widths by
means of an appropriate analysis in which the metallic as well as the dielectric and
radiation losses are considered. Moreover, such devices are very promising for electronic
interconnections and miniaturized passive microwave components like resonators, filters,
variable delay lines (Fig.14a) and antennas (Fig.14b) (89].
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Fig. 14: Examples for applications of high-T_ superconductor thin films: a) current con-
trolled variable delay line [90]; b) electronically tunable patch antenna [91].
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Tab. 4: Survey of available microwave data on the oxide superconductors Lag_,SryCuOy
( LS ), YB32CU307 ( YB ), Bi2$r2CaCu208 ( BSC ) and leB&zCﬁzCU3010 ( TBC )
in polycrystalline (p), c-axis textured (t) and singlecrystalline (s) form.

— 283 —

Laboratory LSYBBSCTBC} pt s] f [GHzl References No.
Wauppertal Univ. X X X X X |14,3,22,87 g‘; oo 62700 4
Argonne Nat.Lab. | X X X o 8712 [ 14,79.80,100-1031 | 2
Cornell Univ. X X XX|}15,6 3. 61, 69, 104-112] 3
Boston NE Univ. X X X 8.10 (1, 68, 74, 113-115] 4
Los Angeles UCLA] X X X X X102, 148 61, 71, 116-1231 S
Los Alamos Nat. L. X X XX X|3, 22 [5,97,98,124-1271 6
Madison/Wi Univ. X X 3-17 [73,1281] 7
Princeton DSRC X X X]|1-14 [61, 85, 129, 1301 8
Lincoln Lab. MIT X X X 10.6-18 [86, 131, 1321 9
Westinghouse/Pa X X 3-10 [83] 10
Rockwell ISC/Ca X X X X160 [77,133, 1341 11
Superc. Techn./Ca X X X 110, 102, 148] 61, 71,112, 122] 12
JAERI/ Japan X X 3,7, 20 78,1351 13
NTT/Japan X X XJ]1-8, 24 (81, 136, 1371 14
DESY X X 0.5 [1381 15
Stanford Univ. X X |1-25 (84,90,117,119-121,1391| 16
Houston Univ. X X X 85 f1401 17
Teddington NPL X X X|10-18 £72,141-1431 18
Washington NRL X X X X9, 18 [144-146] 19
Thomson CSF/LCR X X 2-10.5 [147,148] 20
Ford Aerospace/ Cai X X 4.5 £751 21
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By means of the described microwave measurement techniques, the most interesting
oxide superconductors have been investigated at numerous research laboratories as listed
in Tab. 4. This review is based on about 100 publications, conference contributions,
preprints and private communications on the surface impedance of oxide superconductors
from 21 groups in the span of approximately two and one-half years between the first
observation of rf superconductivity in YBayCugO7_5 [67] and August 1989. They cover
the frequency range from 100 MHz to 150 GHz. Itis remarkable that microwave data
exist at all these laboratories for YBayCugO;_g but only sporadically for other oxide
superconductors. Moreover, at most laboratories polycrystalline samples were tested
first before switching over to textured or singlecrystalline samples. The main reason
for this development consists in the easy single-phase fabrication of bulk YBayCuzO7_s,
which is mostly performed in house. In comparison, textured or singlecrystalline samples
of high quality have been produced only at a few of these laboratories.

RESULTS AND DISCUSSION FOR R (T, f,H,.¢) AND X(T)

Because of the large number of microwave data for the oxide superconductors, it
is rather confusing to report about all of them in detail. Therefore, exemplary results
for common trends will be discussed first in this chapter. The anomalous temperature
dependence of the surface resistance Ry is demonstrated by systematic test series on
polycrystalline bulk ceramic or thick films of YBagCugO7 and initial results for thick
films of BiySryCaCu,yOg and thin films of Tl,BayCayCuz0yq. The frequency dependence
of Ry obtained for such granular or multi-oriented samples follows as measured on a
single YBapCu3O5 thin film over a wide range. Then the best results achieved so far
reproducibly for Rg and X with singlecrystalline YBagCu3O5_s thin films on SrTiO3 and
LaAlOj substrates by laser ablation are presented and compared to those of high quality
single crystals. In order to get an overview of the present state of the art, only the
lowest Ry values measured at all laboratories on different types of YBayCuzO7_g samples
will be compared with respect to the operating temperature and frequency. Finally,
some results on the rf magnetic field H.; dependence of Ry will be given.

The systematically achieved improvement of polycrystalline YBasCu3zO;_5 samples
is shown in Fig. 15. Curves 1 and 2 have been measured on the same pellet after a total
sintering time of 125 h and 240 h, respectively. The corresponding decrease of Ry at all
temperatures has been reproduced quite often and is attributed to the homogenization
of the pellet and improved intergrain contacts. However, sintering times of more than
300 h do not lead to further improvements [70]. Additional ball milling steps during
the powder calcination yield after a sintering time of 282 h bulk samples with a steeper
microwave transition (curve 3) but higher residual resistance than curve 2. Therefore,
a better microstructure with a high degree of phase purity seems to be essential for
a small transition width, while impurities seem to be at least partially responsible for
the residual losses as it is the case for classical superconductors. Attempts to combine
both advantages finally succeed somewhat as shown in curve 4. A further reduction of
R at temperatures below 85K can be achieved much easier with c-axis textured thick
films (curve 5), which have been electrophoretically deposited in a high magnetic field.
Similar results have been obtained with magnetically aligned bulk samples [110,112],
which show a significant anisotropy of Rg depending on the orientation of the rf currents
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Fig. 15: Temperature dependence of the surface resistance of YBa,CuzO7_5 at 21.4 GHz
for differently prepared pellets (1-4) [47,99] and for a c-axis textured thick
film on a silver disc (5) [50,511.

with respect to the c-axis. Both results confirm the importance of in-plane currents
and good intergrain contacts for low residual losses. Nonetheless, all of these polycrys-
talline YBagCu3O7_5 samples provide much higher residual losses and broader transitions
than classical supercondcutors. The major role of the degree of orientation for the
performance of oxide superconductors becomes even more evident in Fig.16. The clear
correlation between R (100 K) and Ry (77 K) for bulk ceramic and textured thick films
in Fig. 16a indicates superior quality for increasing in-plane current contribution. More-
over, it is tempting to postulate from this correlation and an intrinsic limit of about
200 m() for RS(IOO K) at 21.4 GHz a lower bound of a few mQ) for R (77 K) of granular
YBa,CugO7_5, which might be avoidable only with singlecrystalline films. Another clear
correlation exists between the A(0) and R (4.2K) values of bulk samples as shown in
Fig. 16b. While the minimum X(0) is of course limited by the intrinsic value of about
140 nm for currents in the ab-plane, larger values are expected due to averaging over
all grain orientations (see Tab.2) and due to granularity (4). According to (6), the
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observed linear increase of Rg(4.2K) with X(0) for medium quality bulk samples can
be explained by a dominant influence of weak links on their residual losses.
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In comparison to YBayCuzO7_s. polycrystalline BisSroCaCusOg samples yield even
broader microwave transitions and higher residual losses especially for surplus copper
content [93]. This is demonstrated by the typical results shown in Fig.17a. Although
these thick films are highly c-axis textured perpendicular to the surface [100]1, their
microwave transition widths of more than 5K and their R(4.2K) values of about 7mQ
at 3 GHz and 30 m(} at 10 GHz are much worse than those of YBayCu3zO7_s. Nevertheless,
the Ry data in Fig. 17a confirm above 8 GHz roughly the expected frequency dependencies,
i.e. square root behavior above T, turning into a more quadratic like behavior below T,.
Similar high Ry values of BipSryCaCuyOg have been reported for bulk pellets tested
at 3GHz [125] and 21 GHz [93] as well as for single crystals tested at 150 GHz [119].
Therefore, the lack of phase purity seems to cause high microwave losses in the Bi
superconductors. In contrast, first results with bulk [146] and thin-film samples [71]
of the Tl superconductor provide R (77 K) values which are much lower than those of
copper and already competitive to those of YBagCugO7_s5 up to frequencies around
20 GHz. It should be mentioned, however, that the microwave transition curves for
TlyBagCagCuzOyy samples are still very broad as shown in Fig.17b, while those for
TlyBayCaCuqOg thin films are similar broad as in Fig.17a but with an onset at 105K
[122]. Further investigations are necessary to clarify if sufficient phase purity can be
achieved for the Tl superconductors.
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For the determination of the intrinsic frequency dependence of Ry, measurements on
the same sample over a large frequency range are required. Coaxial cavities like the one
shown in Fig. 12b are best suited to perform this with bulk samples at low frequencies.
As the result of such a test series on a YBayCugO7_5 wire sample, between 200 MHz
and 1GHz approximately a quadratic increase of Ry with frequency has been observed
for temperatures between 20 K and 90 K despite of the unusual R, (T) dependence [1011.
Experiments with a thick film sample on a movable piston in a cylindrical cavity have
given for the Ry(w) power-law between 7 GHz and 17 GHz fit exponents of 2.42+0.6 at
77K and 2.7%1.2 at 4.2 K [73]. Higher accuracy in the lower GHz range has been obtained
with stripline [131] or microstrip [128] resonators made from polycrystalline films, which
result at 4.2K in R;(w) exponents close to 2. Similar measurements on a high quality
thin film, which has been epitaxially grown on LaAlO3 by laser ablation and patterned
by standard photolithography, have yielded at 79 K between 1 GHz and 11 GHz an average
R (w) exponent of 1.6 [85]. In the upper GHz range, an alternative way has been pursued
to determine the intrinsic Rg(w) dependence of plane samples with test configurations
like those in Fig.11. A large sample of 25 mm diameter is first measured at 22 GHz and
then cut into smaller pieces for tests at 86 GHz and 148 GHz. The result of such a test
series on a multi-oriented thin film sputtered on LaGaOj is shown in Fig. 18. From these
data, Rg(w) exponents of 2.06£0.14 at 70K and 2.02£0.47 at 30K have been extracted
[97). In summary of all these measurements with different techniques and quality of
YBayCujO7_5 samples, the quadratic frequency dependence of R expected for homo-
genous superconductors according to (11) and (13) as well as for granular ones according
to (6) is confirmed between 100 MHz and 150 GHz at low field levels. As long as the
intrinsic absolute values of Ri(w) are still unknown, however, the observed frequency
dependence of Ry seems to reflect rather the granularity of the samples.
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The best chances to overcome the effects caused by the anisotropy and granularity
of the high-T oxide superconductors exist at present for singlecrystalline YBayCugOy
samples of high phase purity. Since about one year, c-axis oriented YBayCugzO7_s thin
films of 1cm? size are available, which have been epitaxially grown on SrTiO4 substrates
by the laser ablation technique. In Fig. 19, the surface resistance and penetration depth
for two of such films with different thickness are displayed. The oscillations of Ry in
Fig.19a are caused by standing waves in the substrate and are correlated to the strong
temperature dependence of the permittivity of SrTiO3 ( see Tab. 3). This has been verified
by numerical calculations of the effective surface impedance of the sandwich structure,
which are based on multiple reflections of plane waves at all boundaries as described
in detail elsewhere [96]. Depending on the ratio of the film thickness and X, the partial
penetration of the electromagnetic fields into the substrate leads to enlarged effective
Regr and A g values. The excellent fit of the surface impedance data by the calculated
effective values for the known film thickness allows the extraction of the true R (T)
and A(T) values of the films [76]. In the normal conducting regime, typical resistivities
e of about 95 uQicm at 100 K and 290 yQQcm at 300 K have been determined according to
(1) from the R (T) data of these films, which include loss contributions from the still
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present surface imperfections, too. In the superconducting regime, both films exhibit
in accordance with (11) a sharp microwave transition to an R (77 K) value of (8+2)mQ.
Below 70 K, Ry is dominated by a weakly temperature dependent residual surface resis-
tance, which increases for thicker films most probably due to the observed higher density
of imperfections. The measured \(T) data in Fig.19b can be fitted best in the frame
of the BCS theory in the weak coupling limit [150]. For both films, the resultant X\(0)
value of (160+20)nm is in good agreement with literature data for in-plane currents
(see Tab.2). Measurements on a coplanar transmission line resonator patterned from
such a film on MgO have given at 9 GHz and 77 K an overall quality factor of 1300 which
is 14 times higher than that of an equivalent copper resonator and which comes close
to the calculated Q, if a quadratic scaling of R (w) is assumed [88]. Much improved
Q values of about 10000 are expected for the same structure, if high quality YBagCug07
films on LaAlOg substrates could be used.
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Recently, YBa,CugO7 thin films with low microwave losses have been deposited onto
LaAlOj by in-situ laser ablation [111]. Contrary to similar films on SrTiOg, these films
can be measured like single crystals inside superconducting host cavities as shown in
Fig. 10 because of the much reduced dielectric loss tangent of the substrate ( see Tab. 3).
The R (T) curves achieved at 6 GHz for two of such films are compared to those of a
high quality single crystal in Fig. 20. Obviously, both films show a narrower microwave
transition at higher T_ values but a similar residual surface resistance, which comes
already close to the sensitivity limit of the apparatus. Additional measurements on the
same films at 10 GHz and 100 GHz as well as on a patterned film between 2GHz and
12 GHz have confirmed their superior quality and the expected quadratic frequency
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dependence of Ry (77 K) [61]. Nevertheless, the high residual losses of these films still
prohibit the determination of the reduced energy gap. This is demonstrated in Fig. 21,
where the measured temperature dependence of Ry is plotted according to (13) as a
semi-logarithmic function of T./T. Although the drop of Rg near T is as sharp as for
classical superconductors like NbgSn, the expected exponential decrease cannot be
revealed so far for any thin film or bulk samples of YBayCugO7 due to the unknown
origin and temperature dependence of the high residual surface resistance. Moreover,
higher operating frequencies are favourable for the determination of A)/kT_ only if the
residual losses increase less than quadratically with the frequency.
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Fig. 22: Frequency dependence of Ry (4.2K) (a) and R (77 K) (b) for untextured (circles)
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and c-axis textured (triangles) polycrystalline bulk or thick film samples as
well as for epitaxially grown thin films (squares) and single crystal platelets
(rhombuses) of YBa,CujzO7_g at all laboratories listed in Tab.4 (numbers in
symbols). The lines for copper, niobium and NbgSn are given for comparison.
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At this point it is helpful to review the lowest Ry values of YBayCugO7_s achieved
for low magnetic surface field levels at all laboratories listed in Tab. 4. In Fig. 22, this
is done seperately for 4.2K and 77K as a function of frequency. Included are only the
best results from every laboratory for the main categories of samples and for different

operating frequencies. At first sight, the scattering of these data beyond the expected
SRF89DO01
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quadratic Rg(w) scaling even within the same category reflects the different quality of
the samples. Moreover, there is a clear evidence of reduced losses for higher degree
of c-axis orientation, which underlines the influence of anisotropy and granularity on
the measured Ry values at both temperatures. In this respect it is most remarkable that
the record data for Ry(4.2K) of smglecr'ystallme samples at six different laboratories
coincide approximately with the dashed f2 line in Fig. 22a, which is very close to the
prediction of (8) derived for an intrinsic strong granularity of YBagCu3O7. On the other
hand it is difficult to understand, how such losses could occur in a perfectly c-axis
oriented thin film, which provides in-plane currents only. Therefore, improved epitaxially
grown thin-film samples with less imperfections are necessary to get a better judgement
about the relevance of this limit. The only positive aspect of such a limit would be
that it should stay at 77 K in the same order of magnitude, because only slight changes
of the parameters A, R;, and I;; in eqs. (2) to (6) are expected up to this temperature.
This consideration could be an explanation for the rather flat Rg(T) curves of very good
samples (Fig. 20) at low temperatures. In contrast, polycrystalline samples with higher
residual losses due to weak links at grain boundaries or phase impurities show below
0.9 T, a strong temperature dependence of Ry (Fig.15). It is interesting to note that the
best Rj(77 K) values of singlecrystalline YBayCu3O7_g come already close to the Rg(w)
data of classical superconductors like Nb [152]1 and NbgSn [1531 at the same reduced
temperature of 7.7 K and 15 K, respectively ( see Fig. 22b). If one applies the BCS theory
to YBayCugz0O9, however, a much lower Rs(77 K) value of about 0.2 m() at 87 GHz results
from [66] for the material paramaters in Tab. 2 (assumed A,/kT_.%2) due to the higher
gap frequency. From a more practical point of view, the comparison of the present data
with the R (w) curves for copper in Fig.22 is rather encouraging for applications of
polycrystalline YBayCugO7 up to about 10 GHz and of singlecrystalline YBagCu3O7 up
to THz frequencies at temperatures between 20K and 80K and at low field levels.
Moreover, the high-T_. oxide superconductors are potentially useful for applications
even at lower temperatures if higher operating frequencies or field levels than with
classical superconductors could be achieved.

The systematic investigation of the rf magnetic field dependence of Ry is complicated
by the high power needs and the resultant cooling problems for samples of poor quality.
Meanwhile, there are some interesting data for polycrystalline as well as for single-
crystalline YBa;,Cu305. At Argonne, the direct cooling of wire samples with LHe or LNy
inside coaxial resonators (Fig.12b) has enabled to measure their microwave response
up to surface field levels of nearly 100 mT (& 1000 Oe) as shown in Fig. 23. R;(77 K) starts
to increase already at Hg levels as low as 1uT, especially if a residual loss contribution
is substracted which depends not on Hg but quadratically on frequency. Between 100 uT
and 0.3 mT for 888 MHz or 2mT for 190 MHz, a clear rise of Ry(77K) is observed as
expected (9) for granular material. Although it scales slightly more than linearly with
both Hg and f, from the average slope of about 0.6 m()/Oe at 430 MHz and (9) a critical
current density J. of 10% A/cm? can be derived. At higher field levels, a plateau occurs
which amounts to about 5% of the corresponding Rg value just above T.. Therefore,
rf superconductivity still prevails in 95 % of the sample up to the highest field of 64 mT.
Additional measurements of R (Hg) at 4.2K have given similar increasing curves and
plateau heights but slightly reduced slopes as those at 77 K [1011. For bulk pellets in
pulsed power operation, linear slopes for Rg(H) of about 1 mQ)/Oe have been obtained
at 3 GHz [501. All of these results can be explained by the assumption that the weak
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links switch for increasing fields successively into a resistive state. It is remarkable,
however, that the J. values derived from the Rj(Hy) slopes according to (9) are much
higher than those measured directly on such samples. Contrary to the results on bulk
samples, no substantial increase of the residual losses is observed over a wide field
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Fig. 24: R versus magnetic surface field Hj at 6 GHz (a) for epitaxially grown thin films
[111] and (b)) for single crystals [69]. The nominal cavity temperature is 4.2 K, but
near the highest fields the actual temperature of the samples is at least 20 K.
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range for singlecrystalline samples as shown in Fig.24. This result supports strongly
the previous discussion about weak links as the origin for increasing losses at high fields.
Depending on the quality of the sample and the cooling conditions, a rapid rise of Ry
occurs at less than 5 mT for thin films (Fig. 24a) and about 10 mT for single crystals
(Fig. 24b). Further systematic investigations are necessary to answer the question about
the ultimate breakdown fields of the high T oxide superconductors, which are of highest
importance for applications in particle accelerators as well as in microelectronics.

CONCLUSIONS

Within the last two years, systematic improvements have been achieved for the
synthesis of the high-T oxide superconductors. Measurements of the surface impedance
in the whole microwave range between 100 MHz and 150 GHz using various techniques
have proven to be a sensitive means to maximize the phase purity and to minimize the
granularity for different kinds of samples. Sufficient phase purity has been obtained
mainly for YBagCu3O7, which has been investigated most, and without too much damage
also for BiZSrZCaCuZOB, TlgBayCaCuyOg and TlpBayCayCugOyg. The granularity can
be suppressed partially by the c-axis texturing of bulk samples or thick films on silver
substrates in high magnetic fields and more effectively by the epitaxial growth of thin
films on dielectric substrates. However, an intrinsic granularity of the high T, oxide
superconductors due to the very short coherence length in the c-direction cannot be
excluded at present from the existing surface resistance data. The most severe obstacle
are the high residual values of the surface resistance at 77 K and 4.2 K. These scale at
low fields about quadratically with frequency for all types of samples and at high fields
rather linearly with frequency and field strength only in case of granular samples.
Moreover, magnetic field penetration depths X (0) of about 160 nm for in-plane currents
and of at least 230 nm for polycrystalline samples have been determined.

Nevertheless, the following future prospects for applications result from the actual
knowledge and state of the art for YBaZCu3O7_5. Polycrystalline bulk ceramic and thick
films behave like granular superconductors and will be useful only at very low field
levels and microwave frequencies. Singlecrystalline thin films with c-axis orientation
perpendicular to the surface behave close to T, like classical superconductors but
strongly anisotropic and with a residual surface resistance at lower temperatures, which
is high compared to classical superconductors but low compared to copper. Therefore,
such films should be very useful for planar miniaturized microwave components as well
as for microelectronics. C-axis textured thick films on silver substrates could be the
rigth compromise between high performance and technical applicability at least for low
field applications but hopefully also for accelerator cavities.
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