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Abstract

Hot electron rings have been observed close to the ECR
surface by x-ray and other techniques in both axi-
symmetric  (max-B) and non-axisymmetric  (min-B) ECR
ion sources (ECRIS). For optimization of ECRIS
operation it is  imperative  to search an adequate theory
that can predict what stochastic theory failed. Present
paper discusses the ring’s formation process, achievable
energy, and thickness under an electrostatic (ES) wave
theory using a cylindrical geometry  and some numerical
examples. We demonstrate the process to raise amplitude
of the electron-trapping  ES wave due to gradual increase
of temperature of the background electrons which are
accelerated  and detrapped  by the wave. This process was
found to give a radial distribution of hot-electron temper-
ature (Te) over the interaction region. Our numerical
example showed that the higher Te results if the strength
of mirror magnetic field (Bz) is larger  in the bulk of ECR-

zone, provided that the wave acceleration  length (∆r) is
same: e.g., Te =344 keV if Bz =3.50 kG at ∆r=0.4 cm.
This trend agrees with experiments. Our analysis  showed
the origin why the shell thickness is in the order of Larmor
radius. It is straightforward  for present theory to explain
those subjects  in which stochastic theory has deficiencies:
direction of particle rotation in ring, appearance  of multi-
ple rings, and a well-developed x-ray spectrum observable
immediately  after the  application  of rf-power.

1  INTRODUCTION

We have recently identified a hot-electron ring (or shell)
in an ECRIS from a fine-structure  radial distribution of
the ion-confining  negative potential-well  which was
derived using a set of experimental data of ion endloss
current.1) The shell’s mean thickness was found to be 1.7
cm. A scenario given by Golovanivsky3) was found good
to explain  existence  of such shell. Present paper wishes
to develop related theories for further amelioration of
ECRIS.

2  STRENGTH OF ES-WAVE ELECTRIC FIELD

If the incident rf wave is an X-wave (k⊥Bo, E1⊥Bo), an
ES wave can be excited in the bulk of ECR-zone: EM-to-
ES mode conversion. Here we estimate the strength or
amplitude (̂  E 1) of an ES electron-wave  of the form E1 =
ˆ E 1ei(kr−ωt) . In the limit of ˆ E 1>>v1xBz the electron

equation of motion, equation of continuity, and Maxwell
(∇ •D = ρ ) equation may be linearlized, respectively, as

−imωv1 = −eE1 (1)
− iωne1= −ik • neov1 (2)
ik •εoE1 = −ene1 (3)

Here, ne=neo+ne1, ve=vo+v1, and E=Eo+E1; but ∇neo =vo=Eo

=0, and the perturbed electron density is
ne1= ˆ n e1e

i(kr −ωt ) .  We can find that the frequency (ω) to
satisfy  the above set of equations ought to be the electron

plasma frequency defined by neo: ωp ≡ e2neo εom .

Therefore, Eq. (1) gives

ˆ E 1 =
mv1ω p

e
(4)

This expression can be derived from Eq. (3) as well, if
one uses  k=ωpo v1( )n1 no( ) obtainable from Eq. (2).  In

order to estimate the magnitudes of ˆ E 1 in ordinary
condition  we assign the average thermal velocity for v1:
i.e., v1= (2κTe/m)1/2.  Then, Eq. (4) has the form:

ˆ E 1 =
2κTe e

εoκTe neoe2
≡

2κTe e
λ D

 (5)

Since the Debye wavelength is λ D(cm)≡7.43x102

[Te(eV)/ neo(cm-3)]1/2, Eq. (5) has only two unknowns neo

and Te:

ˆ E 1 V/ cm)( )=1.90x10−3 neo(cm−3)Te(eV) (6)

This tells that ̂  E 1 is quite large even at Te=100eV (initial

Te) when neo≈1012cm-3: ˆ E 1 ≈ 19 kV/ cm( ) = 1.9 MeV / m( ) .
Frequencies  of the ES electron Bernstein (Bn) wave are
nωc ≤ ωBn ≤(n+1)ω c if ω c/ω p<<1 for n=1, 2,... while
ωc≤ωBn≤ωh≡(ωc

2+ωp
2)1/2 if ωc/ωpε1 for n=1. Thus, ωBn→ωp

in both extremities: ωc/ωp<<1 and ω c/ω p >>1.

3  ACCELERATION MECHANISM BY ES-WAVE

In order to fit the ECRIS geometry, we have extended the
related formulae3) into cylindrical expressions  from the
conventional Cartesian treatment. This enables us to
consider a cylindrical wave of charged particles. The
radial and azimuthal equations of motion of trapped
electrons are:

dpr
dt

= Fr + pθ •
dθ
dt

 
 

 
 

= q[E+ vxB]r + γmovθ •
vθ
r

(7)

dpθ
dt

= Fθ − pr •
dθ
dt

 
 

 
 

= q[E+ vxB]θ − γmovr •
vθ
r

(8)



Quantities  within the large square-brackets in Eqs. (7)
and (8) are  due to the conversion into cylindrical
coordinates. They are the centrifugal and Coriolis forces,
respectively; which are small at a large radius. We will
neglect both of them here as virtual forces for simplicity.
This is justifiable for the case of min-B type ECRIS where
interesting wave-particle interaction takes place only at  rε
rUHR.

If E 〈〈 v x B, the set of Eqs. (7) and (8) gives a trivial
solution of gyration motion of the guiding center around B
with Larmor radius ρL: (r-ro)2+(θ-θo)2=ρL

2. Thus, we
discuss  here only the case E 〉〉 v x B, consistent with the
previous  assumption in Section 2, except for the interior
to shell where thermalized particles gyrate becasue ˆ E 1=0.

Consider an ES wave propagating in the positive r-
direction perpendicular  to Bz. Stationary  electrons
within the phase of negative Er can be trapped by the

wave potential-well,  φ= -∂Er/∂r= iEr/k, and accelerated

radially by the  -ê E r  force. Then, Eqs. (7) and (8) can be
written as

dvr
dt

= −
e

γmo
[Er +vθ × Bz] (9)

dvθ
dt

= −
e

γmo
[Eθ − vr ×Bz] ( Eθ =0) (10)

Although the externally applied Eθ is zero, interaction of
vr with Bz induces a secondary Eθ. We assume a constant
Vph for vr in Eq. (10): vr=Vph. Then, dvr/dt =0 in Eq. (9),

which gives ∆r(t) ≡ r- rUHR =Vpht. And from Eq. (10),

vθ =
e

γmo
VphBzt  ≡ Vphωc

* t, (ωc
* ≡

ωc
γ

⊥

) (11)

which gives

θ =
1
r

vθdt∫ =
Vphωc

*t2

2r
(γ

⊥
=

Vph

c
) (12)

Equation (11) indicates that vθ increases with time and
surpasses Vph after one-cyclotron period (Tc), because

vθ
Vph

= ωc
* t ≥1,      if      t ≥

1

ωc
* ≡

Tc
2π

. (13)

Substitution  of Eq. (11) into Eq. (9) yields the equation of
motion in the frame moving with the wave at Vph:

dvr
dt

= −
e

γmo
[Er +Vphωc

*Bzt] (14)

Note that the Er  which oscillates  as ̂ E r cos(kr− ωt)  is
pointing the negative r-direction during the outward
electron acceleration. However, a dc electric field,
VphωcBz t , induced by vθ × Bz interaction is in the

positive r-direction. As a result, the radial size of
negative- Er  domain shrinks with time, and the potential-
well  may tilt; thereby detrapping some of electrons from
the beginning. The last electron shall be detrapped at the
time

t o =
ˆ E r

Vphωc
* Bz

   (Natural Detrapping Time) (15)

Note that this to is independent of Te since ˆ E r ~Te
1/2 and

Vph~Te
1/2. The ES wave propagates farther (Vph≠0)

leaving the detrapped particles behind. Denoting the
quantities  in the moving frame by (’), the particle velocity
after detrapping  is (vr)’  = -Vph. Therefore, vr =(vr)’+V ph

=0 in the rest frame, according to the Galilee transform.
Beyond to, the last vθ of detrapped particles must

conserve until a collision,  although dvθ / dt =0 in Eq. (10)

since vr=0  after t ≥ to. This azimuthally coasting velocity

(v θ
o) is the maximum one among the particles detrapped

during their trip. Using the to into Eq. (11) we obtain

vθ
o = Vphωc

* •
ˆ E r

Vphωc
*Bz

=
ˆ E r
Bz

≡ v ExB (16)

The v θ
o after  the first  trip is known by ˆ E 1 of Eq. (6) with

initial Te (=100 eV, say) since neo can be assumed quasi-
constant. Equation (16) indicates that all particles  are  de-
trapped  at the moment when they have just acquired the
ExB drift velocity v

ExB
cm /s( ) = 108 ˆ E r V/ cm( ) / Bz(Gauss),

which is independent of Vph.

The velocity (vθ ) gained by the background

particles parallel to the wavefront is irreversible to the
wave motion of radial direction, thus heating the
background electrons.  If Vph≥v θ

o, the electron energy

corresponding to v θ
o is:

WeV(MeV) = 0.511( 1

1−β //
2

−1),   β // =
v

ExB

c
. (17)

However, if Vph≤v θ
o we should use WeV=κTe=m(v θ

o)2.

Figure 1 shows a spatial evolution of Te of detrapped
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Figure1: Calculation of the detrapped-electron temperature
               as a function of radial distance.
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particles, depicted by total 9-trips. The energy of Fig. 1
was calculated by Eq. (17) with v θ

o=v
ExB

= ˆ E r Bz  using

the ˆ E r  upgraded trip by trip. The Te raised by a trip

enables to generate a new wave with a larger ˆ E r  from the



upper hybrid resonance  (UHR) surface  located  at ∆r=0.
The next trip will achieve  a longer acceleration  length
(∆r). The ∆r by the time to is, since to=∆ro/Vph,

proportional tô  E r : 

∆ro ≡ ro - rUHR = Vphto=
ˆ E r

ωcBz
(vθ

o = ωc
*∆ro ) (18)

On the other hand, time evolution of the Te of
detrapped particles is obtainable by plotting their energy
as a function of to (=0.123 ns for Case 1) as shown in Fig.
2 of next page.

Let us now consider the case  when ˆ E r  has well
grown, so that the natural detrapping radius (ro) could

exceed the ECR radius: ro ≡∆ro + rUHR ≥ rECR. In such a
case, however,
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Figure 2: Time development of hot-electron temperature.
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the ˆ E r  is forced to be damped at r=rECR because Bn-waves

are resonant there satisfying: ωBn=ωc
ECR /q, where q=1,2, ...

Since ˆ E r →0 in Eq. (14), all the particles  must be
detrapped at once at rECR. The particle velocity is then
(vr)’=0 in the moving frame “moving” at Vph=0.
Therefore, vr =(vr)’+V ph=0 in the rest frame. Then, the
maximum acceleration time available for charged particles
is given by

t max =
r

ECR
− r

UHR

Vph
   (Forced Detrapping Time) (19)

This and Eq. (11) give vθ
max = Vphωc

* t max at ECR surface:

vθ
max = ωc

* (rECR − rUHR ) ≡ ωc
* ∆ro

max  (20)

Note that the velocity vθ
max is not of the last single

particle, but of the all particles started from the UHR-
surface satisfying the condition: ωrf2 =ωh2≡ ωc2+ωp2,
where ωc and ωp take their local values. The energy of

<vθ
max>2 will be deposited around the radius rECR as

<v th >2. Thermalized  particles  must depict a gyration

motion with ρL= vrms/ωc ≈ < rECR − rUHR > / γ
⊥

, where

vrms≡(3κTe/m)1/2. This explains theoretical aspect of the
shell thickness experimentally observed,4) and Te of hot

electrons  can be estimated from the formula:

Te(eV) = 0.058 Bz2(Gauss) ρL
2(cm).  (21)

This tells that Te=530keV for an ECRIS (Constance-B)

whose ρL=1.7/2 = 0.85 cm as we have derived.1)

For the evaluation of to and tmax the information of
Vph is essential. It can be calculated from the dispersion

relation of Bn-waves5) in the limit of kρL<<1:

ω2 ≈ωh
2 − (kρ L )2ωp

2 ≡ ωc
2 +ωp

2 1− (kρ L )2{ }(ωc/ωp>>1) (22)

≈ 4ωc
2 1−

3

4
(kρ L )2   

   
, ρ

L
≡

vth
ωc

(ωc/ωp<<1) (23)

Respective phase velocities (ω/k) are given by

Vph ≈ vth
ωc
ωp

1−
ωp

4

ωc
4 ≈ vth

ωc
ωp

 

 
 

 

 
 > v th (ωc/ωp>>1) (24)

Vph ≈ vth
2ωc
ωp

1−
3
4

ωp

ωc

 
 
  

 
 

2

≤ vth  (0.86≤ωc/ωp<<1) (25)

Here, vth≡ κTe / m = 4.19x107 Te(eV) (cm/ s) and we

have assumed  k≈kD≡1/λD≡ ωp/vth. Note that in an under-

dense plasma (ωp ≤ ω rf = ωc
ECR)  either Vph of Eqs. (24) or

(25) is likely because the ωc is that at UHR-surface.

4  NUMERICAL EXAMPLES

Numerical examples were performed for the three cases
shown in Table 1. It was found that at least 0.2 nsec is
needed before forming a hot-electron shell. Figure 3
shows

Table 1: 3-cases considered and result of hot electron energy.

Case 1 Case 2 Case 3
Bz(kG) in the core:

ωc(rad/s) in the core:

2.35
4.14x1010

3.41
6.0x1010

3.50
6.16x1010

ne(cm-3)  in the core: 6.9x1011 1.1x1011 4.8x1010

ωc/ωp in the core: 0.88 3.21 4.96

Vph
o
(cm/sec) in initial: 1.31x108 1.35x109 2.10x109

WeV(keV) at ∆r=0.4 cm: 156(178) 326 344

Here used: vtho=4.2X108 (cm/s) and ωrf2 =ωh2≡ ωc2+ωp2 =2πx1010.

the orbit of trapped-electrons  plotted by Tc/10 time-step:

t*≡ t/Tc =0.1, 0.2, ... until 0.8 when the detrapping takes
place for every trip in this Case 1. The radial and angular
positions, r(t*)=TcVpht*+rUHR and θs(t*)= πTcVph (t*)2/r

+ θs-1, advance gradually as the Vph increases trip by trip.
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Figure 3: Trapped electron trajectories for increasing Vph.
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