
       

Simulation of the Longitudinal Instability
in ATF Damping Ring
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Abstract

A simulation was performed to study single bunch instabil-
ity in ATF damping ring. We investigate the single bunch
behavior of the ATF damping ring using time domain mul-
tiparticle tracking and a Vlasov equation approach.

1 INTRODUCTION

The beam current is often limited by coherent instabilities.
These instabilities can occur either in the longitudinal or
in the transverse directions. Longitudinal ones which we
consider here often cause bunch lengthening or an increase
of the loss rate. Bunch lengthening behavior has been ob-
served in the ATF damping ring. Its measurement was per-
formed below 5.5 × 109 in the bunch population. It is
also interesting to predict the threshold for instability by a
simulation method to operate the ATF damping ring below
threshold.

The simulations were begun with the purpose to un-
derstand instability in the ATF damping ring. Below the
threshold we have merely a bunch lengthening due to the
potential well distortion. The average bunch shape due to
potential well distortion has been performed for the ATF
damping ring to obtain as function of currents[1]. Above
the threshold we have also an increase of the energy spread
within the bunch. Because the potential well distortion does
not explian the energy spread growth, it is interesting to in-
vestigate the energy spread by tracking method. We found
threshold for instability using multiparticle tracking. We
describe the results of the simulation and then give a quali-
tative discussion on the instability in the ATF damping ring.

2 THE WAKEFIELD

We have attempted to find an approximate Green func-
tion wakefield W (z) for the ATF damping ring using code
MAFIA, MASK30 and ABCI, taking as driving bunch a
short, Gaussain bunch with rms length of 1mm. To make
it causal, the part on front of bunch center (z < 0) was re-
flected and added to the back (see Fig.1), a transformation
that preserves the real part of the impedance.

To calculate Vind we have used the same method used
by Bane[2], i.e. binning the macroparticles in z without
smoothing. The induced voltage on any turn is given by

Vind(z) = −eN
∫ z

−∞
W (z − z′)λz(z′)dz′, (1)

with N the bunch population and λz(z) the longitudinal
charge distribution. W (z − z′) is the Green function wake
field.

3 MACROPARTICLE MOTION

To describe the electron’s motion in a damping ring we use
a standard multiparticle tracking method. The initial distri-
butions of Np macroparticles in the phase space are given
with the potential well distribution. Each macroparticle i
are tracked in phase space of position and energy coordi-
nates (zi, εi) with equations of motion which include radia-
tion damping, radiation excitaion and wakefield. The wake-
field gives the effect on a macroparticle i from all macropar-
ticles which precede it in the bunch and is a function of the
phase space coordinates of macroparticle i as well as the
macroparticles which precede it.

For tracking we let the beam be represented by Np
macroparticles; each particle i has position and energy co-
ordinates (zi, εi). The longitudinal motion of the par-
ticle i is advanced on each turn according to the equa-
tions[2][3][4][5]:

∆εi = −2To
τd

εi + 2σεo

√
To
τd
ri + V ′rfzi + Vind(zi) (2)

∆zi =
αcTo
Eo

(εi + ∆εi), (3)

with To the revolution period, τd the damping time, σεo
the nominal rms energy spread, V ′rf the slope of the rf volt-
age (a negative quantity),α the momentum compaction fac-
tor, andEo the nominal energy; ri is a random number from
a normal set with mean 0 and rms 1. The quantity Vrf is
given by

V ′rf = wrf V̂ [1− (Uo/V̂ )2]1/2, (4)

where wrf is the rf frequency, V̂ peak energy gain from rf
and Uo average synchrotron radiation energy loss per turn.

For the simulations we take To =460 ns, Eo =1.3 GeV,
rf frequency νrf =714MHz, σεo=5.46775 ×10−4, and τd
= 20 ms. Therefore νsoTo=242 turns, τd/To=43272 turns.
We choose Vrf=0.2MV, where σzo=6.8 mm, and the syn-
chrotron frequency νso=8.95 kHz. We track the macropar-
ticles for 3 longitudinal damping times.

In the simulations the statistical fluctuation in the beam
distribution associated with the finiteness of the numbers
of macroparticles can be become rather large. The sensi-
tivity of the results to the number of macroparticles was
investigated. It was shown that the bunch length and en-
ergy spread were dependent on the number of macropar-
ticles which were used in simulation. When we examine
the dependence of the simulation results on the number of
macroparticles, it is shown that there is no great differences



       

in the results if we track around 30000 macroparticles. To
calculate λz in each turn we use 680 bins extending over
5σz .

As a second method of calculation we use a computer
program that solves perturbatively the time independent,
linearized Vlasov equation, including the effects of poten-
tial well distortion, looking for unstable modes.
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Figure 1: The wake field used for the simulation.

4 RESULTS

4.1 Average Bunch Distributions

On each turn we calculate the lower moments of the distri-
butions. The average properties of the distributions are ob-
tained by averaging over the last damping time. Figure 2
displays the average values of the σz , σε and< z > as func-
tions of current and also shows the Vlasov equation solu-
tion of σz . The tracking result shows lower bunch lengthen-
ing than Vlasov method. It is shown that the bunch shapes
are more shifted forward than Gaussian due to the inductive
ring. We see that the bunch lengthening in the damping ring
is caused by both potential well distortion and energy spread
due to inductive ring.

Figure 2: Average bunch properties vs number of particles
in a bunch(N). Tracking results and the Vlasov method are
shown.

Figure 3 shows bunch length oscillations for turns
129000-129816. Below threshold the moments of the dis-
tributions are well behaved and the period is seen to be
around 130 turns, or about one-half the zero current syn-
chrotron oscillation period. Above the treshold the oscilla-
tions undergo more pertured macroscopic oscillations.

Figure 3: Bunch length oscillations for turns 129000-
129816 for several current values. They show different
types of bunch length oscillations before and after thresh-
old (Nth = 3.3× 1010).

4.2 The Threshold Current

The instability threshold is normally easy to find from the
turn-by-turn tracking results. In Figure 2 the average rms
energy spread as function of current is plotted. The result
of the tracking shows very small energy spread compared to
Vlasov method[1] and threshold Nth = 3.3 ×1010. A con-
firmation that this is the threshold current is the fact that the
unstable mode in Vlasov method first appears at this cur-
rent.

We note that the bunch lengthening is more increased due
to the increase in energe spread above threshold. Above
threshold the oscillations in the moments of the distribution
obtained by tracking can be large and the pattern can vary
greatly(see Figure 4).

4.3 Vlasov Equation Calculation

K.Oide and K.Yokoya have developed a theory to solve the
time independent, linearized Vlasov equation including the
effects of potential well distortion[6]. Using the wakefield
of Figure 1 we take 6 azimuthal space harmonics and 60
mesh points in amplitude to represent phase space. We find
that, due to the potential well distortion, the large gaps in
mode frequencies have disappeared. It shows that the ATF
damping ring is inductive.

The mode frequencies as function of N , as obtained by
the Vlasov method are shown in Figure 5. A dot represents
a stable mode, an ’X’ an unstable mode, with its size propor-
tional to the growth rate. The first and the strongest unsta-



      

Figure 4: The turn-by-turn rms energy spread vs turn num-
ber.

ble mode is found at 3.3×1010 with a frequency of 2.9νso.
These facts were shown that the threshold for instability be-
ginns at 3.3 × 1010 when we find unstable state in more
smaller interval N. The instability can be described as the
coupling of two radial modes with the same azimuthal mode
number.

Figure 6 gives contours of phase space of the unstable
mode atN=3.5×1010 as calculated by the Vlasov equation.
We see a sextupole mode that has been shifted forward.

4.4 Comparison with Measurement

The calculated bunch lengthening is much lower than the
measurement which was performed by 5.5 × 109. Bunch
lengthening and threshold instability are expected to be es-
timated by measurements with more higher current.

Figure 5: Modes obtained by the Vlasov method.

Figure 6: A contour plot of the unstable mode, obtained by
solving the Vlasov equation, when N = 3.5× 1010
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