
OPERATION SOFTWARE FOR COMMISSIONING OF
KEKB LINAC PROGRAMMED WITH SAD

N. Akasaka, H. Koiso, and K. Oide
KEK, High Energy Accelerator Research Organization, 1-1 Oho, Ibaraki 305, JAPAN

Abstract

SAD was originally developed for accelerator design. In
order to use it as a language for KEKB operation software,
Python interpreter and EPICS channel access interface
were embedded into it. Tkinter, which encapsulates Tcl/Tk
in Python, provides graphical user interface (GUI).
Hardware instruments are accessed through EPICS channel
access routine. In this paper, some of practical tools used
in the commissioning of KEKB linac are presented.

1 INTRODUCTION

SAD (Strategic Accelerator Design) started as a code for
accelerator design at KEK in 1986[1]. Its functionality has
been increasing since then, which includes: optics
matching, particle tracking, Taylor map, spin calculation,
Mathematica-style functions, EPICS channel access
functions and Tcl/Tk[2] interface via Python[3]. Among
these, the last three are important for accelerator control:
Mathematica-style function for programming control
logic, EPICS channel access for controlling hardware, and
Tcl/Tk interface for GUI. Currently, hardware in KEKB
linac is accessed by executing shell commands within
SAD, since EPICS is not introduced there yet.

Merits of using SAD for accelerator control are:

1) Unification of model/control/GUI in a single script.
 A large accelerator such as KEKB requires tight
relationship between a computer model and
observation/control of the beam. SAD ensures direct
relationship between them, so that an accelerator
physicist or an operator can write a necessary software
only with SAD.

2) Immediate and powerful execution of a program.
SAD is an interpreter language and easy to learn/try
programming. Mathematica-style functions for list-
manipulation, functional operations, symbolic and
numerical math, etc., make a program very compact
and highly structured.

3) Libraries with object-oriented features.
Although SAD is not a fully object-oriented language,
it still has some of object-oriented features in its
libraries. For instance, a beam line is identified as an
BeamLine object, which accepts many functions such
as Join, Delete, Insert, Times, etc.

Considering the fact that most commissioning tasks need
an accelerator model, we choose SAD as the most suitable
tool for the commissioning of KEKB according to the
first merit stated above. Although implementing
accelerator modeling capability of SAD in other interpreter

languages such as Java, Python, Tcl/Tk, Mathematica
etc., might have some possibility, it would require
significant time and effort, and we do not think there is
enough reason to do that within the very limited time
before the commissioning of KEKB. Even when no
accelerator model is necessary, SAD does not fall behind
with these interpreter languages.

2 ACCELERATOR MODEL

SAD has many functions which are related to accelerator
models. Only a small part of them is introduced in this
chapter.

2.1 Definition of the beam line

A beam line is defined in SAD as a series of components
like drift space, magnets from 2-pole (bend) to 220-pole,
solenoids, and accelerating cavities etc. Magnets and
accelerating cavities can be spatially overlapped.
Alignment errors (offsets and rotations), fringe field for
magnets, position dependence of accelerating voltage for
accelerating cavities, can be assigned if necessary.
BeamLine[] , which takes beam line components as its
arguments, creates a beam line object, and
ExtractBeamLine[] returns the current line objects or a
beam line object specified by its argument.

2.1 Optics-related functions

CALCULATE command calculates the optics using the
current values of the components. SAD accepts this type
of non-Mathematica-style commands. These are rather
historical, but very convenient for interactive use.
Twiss[] function returns the value of calculated optical
functions (αx, βx, etc.) at the entrance of a component. GO

command executes optical matching. The matching
conditions can be imposed on both geometry and optical
functions by FIT , FIX , and FREE commands.

2.2 Plotting functions

OpticsPlot[] function creates a plot of calculated optical
functions or any given list of values. The abscissa is the
distance in the beam line measured from its entrance. A
schematic beam line is automatically drawn below the
plot. This drawing can be used for selecting components
by binding events to them. When the data is given as a
list, it is a nested list of the position or component name
in the lattice and the value in the form like:

{{SPA1B8, 0},{SPA1C5, 0},.....} .

3 GRAPHICAL PROGRAMMING

SAD outputs graphics on an X-window server. Figure 1
shows the levels of graphics processing.

3.1 Tcl/Tk

Tcl/Tk is one of the most widely used toolkits for
building GUI. One can easily place common user interface
components like buttons or text entries and customize
their behavior for the application. Applications can send
SAD expressions to another application on the same X-
server and receive their result. This is realized by directly
calling Xlib functions instead of using send command of
Tk, which only sends Tcl commands.

3.2 Programming style

In the case of creating a button in a new window, the
SAD script would be as follows:

w = Window[];
b = Button[w,
 Text->“Hello”,
 Command:>Print[“Hello, World!”]];

The result is shown in Fig. 2. The first line creates a
window and the next 3 lines create a button whose label is
“Hello”. The first argument of Button[] is the parent of
the button. The button is automatically packed in the
parent window w. The attributes of the button, Text and
Command in this case, are passed as (delayed) rules. When
this button is clicked, it executes the SAD function
Print[“Hello, World!”] and prints “Hello, World!” on
the console. Any SAD function can be specified for
Command attribute.

Fig. 2 Hello World example in SAD.

4 EXAMPLES

4.1 KBFrame

KBFrame is written to provide a default main window
with a menu bar, status line, progress bar, etc. The code
below creates a window shown in Fig. 3:

w = KBMainFrame[
 ”Ex1”,f,Title->”Example 1”];

A frame is created with the name f , which is used for
arranging application-specific components in it. The
downward arrow on the right of the menu bar is the task
menu, with which one can switch between SAD
applications running on the same X-server.

KBFrame provides convenience functions that
arrange components without explicit use of geometry
managers. This function assumes fixed parameter values
for geometry management so that the user doesn’t have to
care about it at the expense of some of the flexibility of
Tcl/Tk ‘pack’ geometry manager. The components can be
arranged in the main application window or in a dialog
box created for them.

KBFrame is used in the applications presented
below.

4.2 Klystron status

Figure 4 is the panel for displaying klystron status in A-
C sectors of the linac. When one or more klystrons are
tripped, it brings itself on top of the other windows and
(optionally) warns the operator with synthesized voice.
The voice is generated on a Macintosh with text-to-
speech, which reads input strings aloud. UDP packets are
used for the communication between SAD and the
Macintosh.

Fig. 4 Klystron status display.

4.3 BPM display

Figure 5 shows the BPM monitoring panel. This is an
example which uses an accelerator model in SAD. The
displayed data from top to bottom are horizontal beam
position, horizontal steering strength, vertical beam
position, vertical steering strength, and bunch current. The
plots and the accelerator line below is drawn by
OpticsPlot[] . The value of BPM reading can be

Xlib (C)

Tk (C)

Tk Widgets (C & Tcl)

SAD (Fortran & C)

Tkinter.n (SAD)

Application (SAD)

Fig. 1 Levels of graphics processing in SAD.

Fig. 3 KBFrame before application-specific components
are placed.

displayed by clicking on the corresponding data point in
the plot.

4.4 Optics matching and emittance measurement

Twiss parameters and emittance can be measured from the
beam sizes with different strength of a Q-magnet. The
panel in Fig. 6 shows the result of fitting of the measured
data. Calculated twiss parameters and emittance are
displayed at the top of the panel. The measurement
conditions (changed Q and observed screen) are specified in
another panel by selecting components in the schematic
beam line drawn by OpticsPlot[] .

Fig. 6 Emittance calculation panel.

4.5 Orbit history

Figure 7 is a display of the fluctuation of BPM readings.
The deviation from the time-average of each BPM reading
is plotted as a function of time. If BPM readings don’t
change at all, the displayed plot becomes a perfectly flat
plane. This plot is created by a 3D plotting function
ListBirdsEyePlot[] . SAD has other plotting functions

not explained above, which include: ColumnPlot[] (bar
graph), FitPlot[] (fit arbitrary function to given data and
plot the result), and ListPlot3D[] .

Fig. 7 Orbit history panel.

5 ACKNOWLEDGMENT

The authors wish to thank N. Yamamoto for initial
implementation of EPICS channel access and Tcl/Tk in
SAD, K. Furukawa and N. Kamikubota for preparing
shell commands to access hardware, and KEKB linac
commissioning group for cooperation.

6 REFERENCES
[1] http://www-acc-theory.kek.jp/SAD/sad.html.
[2] “Practical Programming in Tcl and Tk”, Brent Welch,

Prentice Hall.

Fig. 5 BPM display.

