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Abstract

The intrinsic limit of field homogeneity and the relation
between the field homogeneity and multipoles of helical
dipoles are analytically and geometrically investigated.
The field homogeneity of helical dipoles, deformed by the
twisting of the 2D dipole is intrinsically limited by the
degree of twist, differently from that of the 2D dipole.  It
results that the highest homogeneity of the dipole field for
the circular homogeneous cross-sectional region is
accomplished with the non-zero helical sextupole.

1  MAGNETIC FIELD OF IDEAL HELICAL
DIPOLES

1.1  Interior magnetic field of helical dipole

The interior magnetic field of helical dipole coil can be
expressed as follows, on the European definition, [1 - 3]
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where k = 2π/L, L is the helical pitch length, r0 is the
reference radius, and In(nkr) is the modified Bessel function
of the first kind of order n, and Kn(nkr) is the modified
Bessel function of the second kind of order n.  Therefore,
the y component of field at z=0, By(r,θ,z=0) becomes,

By(r,θ,z=0) = Br(r,θ,z=0) sin θ + Bθ(r,θ,z=0) cos θ       (2)

On the case with an(k)=b2n(k)=0 for n=1, 2, 3, ... , ∞,
corresponding to the dipole symmetry,
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The limiting forms for small argument of k In'(nkr) and
In(nkr)/r are as follows, [4]
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Then, the asymptotic form for the y component of field at
z=0, By(r,θ,z=0) as k→0 (L→∞) becomes,

limk→0 By,helix(r,θ,z=0)  = By,2d(r,θ) 

= Bref ( r
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Then, it results that the asymptotic form of By for helical
dipoles is equal to the form for 2-dimensional dipoles.

1.2   About an ideal helical dipole

With the assumption of b1=1, b3=0, b5=0, ... ,
corresponding to the ideal dipole, the y component of field
at r=r0, z=0, By(r=r0,θ,z=0) becomes,
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where the helical pitch length     L=2.4        m,       k       =       2       π       /2.4        =
   2.62,       r      0      =31        mm     are assumed.  The 3D and contour plot of
By for the ideal dipole are shown in Figs. 1 and 2, with
    B       ref      (k)        =         B       y      (r=0,      θ      ,z=0)        =         B       y0      =        4.0         T    .  Similarly, the
sextupole term of field at r=r0, z=0, By(r=r0,θ,z=0)
becomes,
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                                                                          (7)
Therefore, with the following value of the helical
sextupole coefficient, b3(k),
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the cos 2θ term of By(r=r0,θ,z=0) vanishes.  As a result,
with the assumption of b1(k) = 1, b3(k) = 8.2 × 10-4, b5(k)
= 0, ... , corresponding to the modified ideal dipole, the y
component of field at r=r0, z=0, By(r=r0,θ,z=0) becomes,

By(r=r0,θ,z=0) = Bref(k) M1(k,r0,θ) + M3(k,r0,θ)  

= Bref(k) 1.00165 - 1.015 × 10-6 cos 4θ        (9)

The 3D and contour plot of By for this modified ideal
dipole, with b1(k) = 1, b3(k) = 8.2 × 10-4, b5(k) = 0, ... ,
are shown in Figs. 3 and 4.  Therefore, it can be
recognized that the homogeneity of the dipole field By at
the circular region of r=31 mm is limited.  As a result,
with the helical sextupole coefficient b3(k) = 8.2 × 10-4,
the minimum value of |(By(r,θ,z=0) − By0)/By0| is about
0.165 % which is intrinsically determined from the value
of the modified Bessel function of the first kind of order 0,
I0(kr0), depending on the twist or k.

2  RELATION BETWEEN FIELD
HOMOGENEITY AND HELICAL

MULTIPOLES

The relation between the field homogeneity at the circular
region of r=31 mm and helical multipoles can be also
geometrically investigated.  The field homogeneity of the
interior magnetic field for helical dipole coils can be
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      Fig. 2  Contour plot of By for the helical dipole,
          with b1=1, and b3, b5, ...=0.
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         Fig. 1  3D plot of By for the helical dipole,
           with b1=1, and b3, b5, ...=0.
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        Fig. 4  Contour plot of By for the helical dipole,
             with b1=1, b3=0.00082, and b5, b7, ...=0.
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             Fig. 3  3D plot of By for the helical dipole with
                   b1=1, b3=0.00082, and b5, b7, ...=0.



expressed as follows with the definition of b1(k)=1,

differently from that of the 2D dipole,

By(k,r,θ,z=0) - Bref(k)

Bref(k)
 

= M1(k,r,θ) -1  + b3(k) M3(k,r,θ) + b5(k) M5(k,r,θ) + ... 
                                                                        (10)

Therefore, the requirement condition for the helical
multipoles can be calculated from the prescribed
homogeneity of the dipole field By at the boundary points
of the circular region of r=31 mm shown in Fig. 5, using
Eq.(10).  For example, for |(By(r,θ,z=0) − By0)/By0| of 0.2

% and 0.4 %, with b7(k)=0, b9(k)=0,…, the satisfying
region of (b3(k), b5(k)) for the prescribed field difference at
(r=31 mm, θ=0) is shown in Fig. 6.  The darker region in
Fig. 6, corresponds to |(By(r,θ,z=0) − By0)/By0| of 0.2 %.
The resultant satisfying regions of (b3(k), b5(k)) for all
boundary points for |(By(r,θ,z=0) − By0)/By0| of 0.18 % and
0.3 % are shown as the central white zones in Figs. 7 and
8, respectively.  Therefore, it is recognized that the
satisfying region of (b3(k), b5(k)) with b7(k)=0,

b9(k)=0,…, for all boundary points vanishes for
|(By(r,θ,z=0) − By0)/By0| of < 0.165 %.  This result is
equivalent with Eq.(9).

3  CONCLUSION

The intrinsic limit of field homogeneity and the relation
between field homogeneity and helical multipoles of
helical dipoles are obtained.  It can be realized that the
field homogeneity of helical dipoles is significantly
different from that of the ordinary 2D dipoles.  This
relation will be useful to optimize the cross-sectional
shape of helical dipole coils.
In addition, this studies will be applicable for the
estimation of the effect of geometrical distortions of the
ordinary 2D dipole due to the twist.
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                    Fig. 5  Homogeneous region  of By

                        with a circular shape.
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       Fig. 7  (b3, b5) relation of < 0.18 % of |By-By0|/By0

            with b7=0, and b9, b11, ...=0.
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     Fig. 8  (b3, b5) relation of < 0.3 % of |By-By0|/By0

            with b7=0, and b9, b11, ...=0.
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    Fig. 6  (b3, b5) relation of < 0.2 % and < 0.4 % of
        |By-By0|/By0 at (x = 31 mm, y = 0 mm) with b7=0,
        and b9, b11, ...=0.


