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Abstract

The intrinsic limit of field homogeneityand the relation
betweenthe field homogeneityand multipoles of helical
dipoles are analytically and geometrically investigated.
The field homogeneity of helicaipoles,deformedby the
twisting of the 2D dipoleis intrinsically limited by the
degree of twist, differently fronthat of the 2D dipole. It
results that the highest homogeneity of the dipole fiedd
the circular homogeneous cross-sectional region is
accomplished with the non-zero helical sextupole.

1 MAGNETIC FIELD OF IDEAL HELICAL
DIPOLES

1.1 Interior magnetic field of helical dipole

The interior magneticfield of helical dipole coil can be

expressed as follows, on the European definition, [1 - 3]
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wherek = 217L, L is the helical pitch length, r, is the
reference radius, ang{ikr) is the modified Bessélinction
of the first kind of order n, and K, (nkr) is the modified
Bessel function othe secondkind of ordern. Therefore,
the y component of field at z=0,(86,z=0) becomes,
By(r,08,2=0) = B(r,0,z=0) sinB + Be(r,6,z=0)cosO (2)
On the casewith g,(k)=b,(k)=0 for n=1, 2, 3, ... , oo,
corresponding to the dipole symmetry,
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The limiting forms for small argumentof k I'(nkr) and
I(nkr)/r are as follows, [4]
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Then, the asymptotic form for the y componenfield at
z=0, B/(r,6,2=0) as k-0 (L - ») becomes,

limi .o [ By.heiix(r,8,2=0) = By2(r,6)

= Brefnzl’vs(%)n_lbn COS[(H-lﬁ] (5)

Then, it results that the asymptofarm of B, for helical
dipoles is equal to the form for 2-dimensional dipoles.

1.2 About anideal helical dipole

With the assumption of b;=1, b,=0, bs=0, ... |,
corresponding to the ideal dipole, the y componerfietf
at r=r, z=0, By(r=5,0,2=0) becomes,
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= Bre(k) {1.00165 - 8.24 10* cos B} ©)
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Fig. 1 3D plot of Bfor the helical dipole,
with =1, and R b, ...=0.

e
20/ ~
10

E

>
-10
-20
-30M
©30 -20 -10 0 10 20 30

x (mm

Fig. 2 Contour plot of Bfor the helical dipole,
with k=1, and b, b, ...=0.

where the helical pitch length L=2.4 m, k = 217/2.4 =
2.62.r,=31mmare assumed. The 3D and contplat of
B, for the ideal dipole are shownin Figs. 1 and 2, with
Bedk) = B(r=08.z=0) = B,= 4.0 T. Similarly, the
sextupole term of field at r=r,, z=0, By(r=r,0,z=0)
becomes,

By(r=r0,8,2=0}r=3 = Bre(k) ba(k) M3(k,r0,6)
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Therefore, with the following value of the helical

sextupole coefficient, k),
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Fig. 3 3D plot of Bfor the helical dipole with
1, b=0.00082, and b, ...=0.
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Fig. 4 Contour plot of Hor the helical dipole,
with b=1, b=0.00082, and b b, ...=0.

the cos 26 term of B (r=r,,08,z=0) vanishes. As a result,
with the assumption of (k) = 1, ky(k) = 8.2x 10*, by(Kk)
=0, ..., corresponding to thmodified ideal dipole, the y
component of field at rgrz=0, By(r=f,06,z=0) becomes,

By(r=r0,8,2=0) = Bei(k) {M1(k,r0,8) + Ma(K,r0,6) }
= Brer(k) {1.00165 - 1.015 10° cos #)} ©)

The 3D and contour plot of B, for this modified ideal
dipole, with (k) = 1, by(k) = 8.2 x 10% by(k) = O, ... ,
are shown in Figs. 3 and 4. Therefore, it can be
recognizedhat the homogeneityof the dipole field B, at
the circular regionof r=31 mm is limited. As a result,
with the helical sextupolecoefficientb,(k) = 8.2 x 10%,
gue minimum value of |(B,(r,0,z=0) — B,0)/B,| is about

.165 % whichis intrinsically determinedrom the value
of the modified Bessel function of the first kind of order
lo(kro), depending on the twist or k.

2 RELATION BETWEEN FIELD
HOMOGENEITY AND HELICAL
MULTIPOLES

The relation between the fieltbmogeneityat the circular
region of r=31 mm and helical multipoles can be also
geometrically investigatedT he field homogeneityof the
interior magneticfield for helical dipole coils can be
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Fig. 5 Homogeneous region pf B
with a circular shape.
expressedas follows with the definition of bq(k)=1,

differently from that of the 2D dipole,
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By(K,1,6,2=0) - Ber(K)| Fig. 6 (f, by) relation of < 0.2 % and < 0.4 % of
‘ Brei(K) ‘ [B-B,l/By, at (x = 31 mm, y = 0 mm) with,50,
= (Ma(kr.8) -1) + bs(K) Ma(kir.0) + bs(k) Ms(kor @) + .| 2R B =70
(10) 40
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Therefore, the requirement condition for the helical 3 \\\\\\"V/[///M A
multipoles can be calculated from the prescribed 20 \\x\“ ,////
homogeneity of the dipole fielB, at the boundarypoints T 100 \\\k\\\ ‘;////
of the circular region of r=31 mm shovim Fig. 5, using
Eq.(10). For example, fd(B,(r,6,2=0) — B,,)/B,| of 0.2
% and 0.4 %, with b,(k)=0, by(k)=0,"--, the satisfying
region of ((k), by(k)) for the prescribed field difference 5
(r=31 mm,6=0) is shown in Fig. 6. Thdarkerregionin T
Fig. 6, correspondso |(B,(r,8,z=0 — B,)/B,| of 0.2 %. -3 O oS
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The resultantsatisfying regionsof (by(k), bs(k)) for all %Wfo’&is
boundary points for |(fr,6,2=0) — B,,)/B,,| of 0.18 % and -
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0.3 % are shown as the central white zondsigs. 7 and b3 (107-4)

8, respectively. Therefore, it is recognizedthat the Fig. 7 (b by) relation of < 0.18 % of |BB 4|/B,,
satisfying region of (by(k), bs(k)) with b,(k)=0, with b=0, and b, b,,, ...=0.

by(k)=0,--, for all boundary points vanishes for _— , .
|(B,(r,8,2=0 — B,)/B,g| of < 0.165 %. This result is N\ H
equivalent with Eq.(9). N
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3 CONCLUSION

The intrinsic limit of field homogeneityand the relation

between field homogeneity and helical multipoles of

helical dipoles are obtained. It can be realizedthat the

field homogeneity of helical dipoles is significantly BN
different from that of the ordinary 2D dipoles. This S %
relation will be useful to optimize the cross-sectional e
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shape of helical dipole coils. , 2o RN A
In addition, this studies will be applicable for the -30-20-10 0O 10 20 30 40

estimationof the effect of geometricaldistortions of the b3 (107-4)

ordinary 2D dipole due to the twist. Fig. 8 (b, b) relation of < 0.3 % of |BB,,|/B,,

with b=0, and b, b,,, ...=0.
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