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Abstract

High brightness beam transport in a non-uniform
focusing channel, while avoiding beam emittance growth
and halo formation, is considered. Two approaches to
self-consistent problem for matched beam distribution are
treated: (i) focusing field is determined by given beam
distribution, and (ii) matched beam distribution is defined
by focusing potential of the structure. Attained solutions
provide theoretical basis for choosing parameters of the
space charge dominated beam transport with suppressed
halo.

1  INTRODUCTION

Prevention of emittance growth and halo formation
in high-intensity beams are a key problem for proposed
particle accelerators for heavy ion fusion, spallation
neutron sources, and radioactive waste transmutation.
Beam with a nonuniform profile is mismatched within a
linear focusing channel. It results in a beam emittance
growth and halo formation (see Fig. 1).

To prevent emittance growth and halo formation,
beam has to be matched with the channel. Beam
distribution function, f (x, px, y, py), expressed as a
function of Hamiltonian, H, is a constant of motion in a
uniform, time-independent focusing channel

f = f (H),  H = 
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2  + py
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γ 2
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where x and y are particle positions, px and py are
transverse particle momentum, q and m are charge and
mass of the particles, respectively, γ is a particle energy,
Uext is a potential of focusing field, and Ub is a space
charge potential of the beam. Matched beam distribution
function (1) obeys self-consistent Vlasov-Poisson
equations:

d f
d t

 = 1
mγ

 (∂f

∂x
 px+ ∂f

∂y
py) - q( ∂f

∂px
 ∂U

∂x
 + ∂f

∂py
 ∂U

∂y
) = 0, (2)

1
r
 ∂
∂r

 (r ∂Ub
∂r

) = - q
εo

  
-∞

∞
f (x, px, y, py) dpxdpy

-∞

∞
 , (3)

where U = Uext + Ubγ -2 is a total potential of the
structure. There are two formulations of the self-
consistent problem:

1. Starting with given beam distribution function to
find the required focusing potential, which maintains this
distribution in the channel.

2. Starting with given potential of the focusing
structure to find the matched beam distribution function.
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Fig. 1. Emittance growth and halo formation of 150 keV,
0.5A, 0.07 π cm mrad proton beam with distribution
function, Eq. (4), in linear  focusing channel.

2  FOCUSING FIELD FOR BEAM  EQUILIBRIUM

General method to solve the first problem is to
substitute beam distribution function into Vlasov's
equation and find total potential of the structure U [1].
Required focusing field is then found as a difference
between the total potential and known space charge
potential of the beam Uext = U - Ubγ -2. The same
relationship is val id for electr ical f ield
Eext(r) = E(r) - Eb(r) γ -2. If distribution function
provides elliptical phase space projections, total field of
the structure has to be linear function of radius [1].

Consider beam with distribution function
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which does not possess elliptical symmetry. Substitution
of distribution function (4) into Vlasov's equation (2)
provides expression for total field of the structure

E(r) = - 1
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Fig. 2. Total field of the structure, required focusing field
and space-charge field of the beam with distribution
function, Eq. (4).

where ε*  = Ropo/(mc) is an effective normalized beam
emittance. Space charge field of the beam is obtained
from the Poisson's equation (3):

Eb(r) =  I
2πεoβc r

 erf( r2

Ro
2

) ,                   (6)

where I is a beam current and β is a particle velocity.
Combination of total field, Eq. (5), and space charge
field, Eq. (6), gives the expression for the required
focusing field of the structure to maintain beam
distribution:
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γ

 mc2

q Ro
 [(ε*

Ro
)
2
( r3

Ro
3

) + 2I
Ic βγ

(Ro
r

) erf( r2

Ro
2
)] ,    (7)

where Ic ≡ 4πεomc3/q is a characteristic value of beam
current. Fig. 2 illustrates relationship between space-
charge field, total field and focusing field of the structure.
In contrast with distribution functions with elliptical
symmetry (for example, Gaussian distribution), in the
considered case total field is not a linear function of
radius, but is essentially nonlinear function ~r3. In Fig. 3
results of beam dynamics study with conserved beam
distribution function in the channel with focusing field,
Eq. (7), are presented. Required focusing field can be
created in plasma lens.

Important point is stability of beam equilibrium in
nonlinear focusing field. Sufficient condition for stability
is given by Newcomb-Gardner theorem [2], which states,
that monotonically decreasing equilibrium distribution
function of Hamiltonian ∂f/∂H < 0 is stable with respect
to perturbations. Distribution (4) as well as most of
realistic beam distributions satisfies stability condition.
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Fig. 3. Conservation of 150 keV, 0.5A, 0.07 π cm mrad
proton beam with distribution, Eq. (4), in nonlinear
focusing field, Eq. (7).

3  SELF-CONSISTENT BEAM DISTRIBUTION IN
CONTINUOUS FOCUSING CHANNEL

Inverse self-consistent problem is to find unknown
distribution function via given focusing potential of the
structure. In continuous channel with linear focusing field
all self-consistent solutions tend to uniform beam in the
limit of high brightness beam [3]. In Ref. [4] this result
was generalized for the case of an arbitrary applied
focusing field. It was found that the self-consistent
stationary particle distribution has such a shape that the
space charge beam potential Ub is opposite to external
focusing potential Uext:

Ub = - γ 2 kb 
1 + kb

  Uext ,                      (8)

where b ≡ 2IR2/(βγIcε2) is a dimensionless value of
beam brightness and k is a beam profile parameter (k = 1
for uniform beam and k = 2 for Gaussian beam).

Space charge density of the matched high-
brightness beam is determined by Poisson's equation
ρb = - εo∆Ub. Matched beam profile is defined mostly by
focusing potential function and is a weak function of
particle distribution in phase space. Time-dependent
focusing potential U(r,ϕ,t) = Uo(r,ϕ)·cosωot can be
substituted by an effective potential

U ext (r,ϕ) = qE2 (r,ϕ)

4mγωo
2

 ,                        (9)

if phase advance of particle oscillations per period is
small enough (smooth approximation).



4  BEAM  TRANSPORT IN QUADRUPOLE
CHANNEL WITH OCTUPOLE COMPONENT

Matched conditions for nonuniform beam requires
the focusing field to be highly nonlinear function of
radius. Consider an uniform four-vanes quadrupole
focusing structure with octupole field component.
Electrostatic potential of such structure is given by

U(r,ϕ,t) = ( G2

2
 r2 cos2ϕ + G4

4
 r4 cos4ϕ ) sin ωot ,   (10)

where G2 is a quadrupole field gradient, G4 is an octupole
field component. Oscillating field (10) creates the
effective scalar potential

Uext (r,ϕ) = mc2

q
 µo

2

λ2
 [1

2
 r2+ a4 r4cos2ϕ + a4

2

2
 r6],      (11)

where µo ≡ q G2 λ2/( 8 π mc2) is a smoothed transverse
oscillation frequency, λ  = 2πc/ωo is a wavelength, and
a4 = G4 /G2 is a ratio of the two field components.
Equipotential lines of the effective potential (11) are
transformed from circles at small values of radius (r), to
distorted ellipse at larger r.

Space charge density of the matched high-brightness
beam in the considered channel is given by:

ρb(r,ϕ) = ρo[1 + 6 a4 r2cos2ϕ + 9a4
2r4] .        (12)

Beam with distribution of (12) is maintained in the
channel with effective potential (11). Due to the term
cos2ϕ, space charge density of (12) is a decreasing
function with x-coordinate, but increasing function with
y-coordinate, being r2 = x2 + y2.

Realistic beam distribution has monotonically
decreasing density function with radius. Good
approximation to realistic beams is a distribution of the
form ρb = ρo [1 - (r/R)2]

2
, which is close to the truncated

Gaussian distribution. Realistic beam is expected to be
matched in x-coordinate, but mismatched in y-coordinate
After sufficiently long transport, beam will be
mismatched with such channel due to coupling between x
and y coordinates. Therefore, utilizing octupole
component in a quadrupole channel is not enough to
provide beam matching.

 5  BEAM  TRANSPORT IN  QUADRUPOLE
CHANNEL WITH DUODECAPOLE COMPONENT

Better results were observed in computer simulation
of the beam in a quadrupole structure with duodecapole
field component G6  (see  Refs. [1], [4]):

U(r,ϕ,t) = ( G2

2
 r2 cos2ϕ + G6

6
 r6 cos6ϕ ) sin ωot .  (13)

In that case the effective potential and matched beam
profile are symmetric functions with y as well as x
coordinates:

U ext (r,ϕ) = mc2

q
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 [1

2
 r2+ a6 r6cos4ϕ + 

a6
2

2
 r10] ,  (14)

ρb = ρo (1 + 10 a6 r4 cos 4ϕ + 25 a6
2 r8) ,       (15)

where a6 = G6/G2 is a ratio of field components.
Equipotential lines U ext (r,ϕ) = C are close to square.
Matched beam density, Eq. (15), is a decreasing function
of x and y coordinates, where ϕ  =0, 90o, but increasing
function of intermediate x-y direction, where ϕ  =45o.
Equipotential line truncates beam in such way, that
realistic beam with monotonous decreasing density
function of radius remains approximately matched with
quadrupole-duodecapole focusing structure (see Refs. [1]
and [4] for more details).

6   MATCHED BEAM IN QUADRUPOLE
CHANNEL WITH HIGHER ORDER

COMPONENTS

Including of higher order terms in quadrupole
channel makes an analysis complicated. Consider
structure with potential

U(r,ϕ,t) = ( G2

2
 r2 cos2ϕ + G6

6
 r6 cos6ϕ + G10

10
 r10 cos10ϕ

+ G14

14
 r14 cos14ϕ) sin ωot .                     (16)

Matched beam distribution is given by

ρ(r,ϕ) = ρo[1 + 10 r4a6cos4ϕ + r8(18a10cos8ϕ + 25a62)

+ 169r24a14
2  + r12(26a14 cos12ϕ + 90 a6 a10 cos4ϕ) 

+r16(81 a10
2  + 130 a6 a14 cos8ϕ)+234r20a10 a14 cos4ϕ],(17)

where a10 = G10/G2 and a14 = G14/G2. Higher order field
components result in more round matched beam
boundaries, but in the same time in more non-uniform
matched beam profile with increasing - decreasing
functions of azimuth angle. Realistic beam profile
becomes essentially mismatched with the function, Eq.
(17), at the beam boundary, where effect of high order
field components makes beam matching difficult.
Including of higher order, than duodecapole, field
component does not improve matching of realistic beam
with the structure.
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