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Abstract z=0
x107
High brightness beam transport in a non-uniform ¢ _ 01 .
focusing channel, while avoiding beam emittance growth 2 £ 0.08
and halo formation, is considered. Two approaches to 15 : 0.06 £
self-consistent problem for matched beam distribution g o ot
treated: (i) focusing field is determined by given beam | : = 0
distribution, and (ii) matched beam distribution is defined -0.5 £ -0.02 £
by focusing potential of the structure. Attained solutions ™ pyd:
provide theoretical basis for choosing parameters of the ", E 008E

space charge dominated beam transport with suppressed.s -0.1
25215105005115225 25215105005115225

halo.
1 INTRODUCTION x (cm) x (cm)

Prevention of emittance growth and halo formation Z =380 cm ,
in high-intensity beams are a key problem for proposed x 10
particle accelerators for heavy ion fusion, spallation 25 0.1¢
neutron sources, and radioactive waste transmutation. 2 : 0.08
Beam with a nonuniform profile is mismatched within a  *> = [ 7" 5] 00oE
linear focusing channel. It results in a beam em|ttancg 05| i g 002:
growth and halo formation (see Fig. 1). 0 F—= = 0E

To prevent emittance growth and halo formatlon 'O'i’é 'g-gié
beam has to be matched with the channel. Beam ,: T ] 006 -
distribution function, f(x, px, ¥, p), expressed as a -zi -o.os§

. . . . . : 25 L -0.1
function of Hamiltonian, H, is a constant of motion in a >, - 05005115225 = 252151.050051 15225

uniform, time-independent focusing channel x (cm) X (cm)

f=f(H), H= P+ p§/ +q Uexe + q (1)  Fig. 1. Emittance growth and halo formation of 150 keV,
2my 0.5A, 0.07tcm mrad proton beam with distribution
function, Eq. (4), in linear focusing channel.
where x and y are particle positions and g are

transverse particle momentum, g and m are charge ard FOCUSING FIELD FOR BEAM EQUILIBRIUM
mass of the particles, respectivepis a particle energy,

Uext is a potential of focusing field, andwlils a space General method to solve the first problem is to
charge potential of the beam. Matched beam distributigitbstitute beam distribution function into Vlasov's

function (1) obeys self-consistent Vlasov-Poissogguation and find total potential of the structure U [1].
equations: Required focusing field is then found as a difference

between the total potential and known space charge

potential of the beam &}t = U - Upy 2. The same
—f=mi px+ —py) q(af a—u+iau) 0,(2) relationship is valid for electrical field
dt Yo px Ox  dpy Oy Eext(r) = E(r) - Bo(r) y2. If distribution function
provides elliptical phase space projections, total field of
o0 oo the structure has to be linear function of radius [1].
Lﬂ( %) =-9 ’ ’ f (% Px. ¥, By) dpxdpy . (3) Consider beam with distribution function
For or €

J-00

f=foexp (-2 B o2y NG

where U = Ut + Upy 2 is a total potential of the P RS

structure. There are two formulations of the SeIfwh|ch does not possess elliptical symmetry. Substitution
consistent problem:

1. Starting with given beam distribution function toOf distribution function (4) into Vlasov's equation (2)

find the required focusing potential, which maintains thigrowdes expression for total field of the structure

distribution in the channel. 1 mc2 2.3
2. Starting with given potential of the focusing E(r):'*—(E ) (= 3) : (5)
structure to find the matched beam distribution function. Y qRo Ro Ra
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Fig. 2. Total field of the structure, required focusing field > ¢ pyed:
and space-charge field of the beam with distribution g &l 3 77 P YL O O O
function, Eq. (4). -2.5-2-15-1-0.50 0.51 1.5 22,5  -25-2-15-1-050051152 25
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wheree* = Rypg/(mc) is an effective normalized beamFig. 3. Conservation of 150 keV, 0.5A, 0.@&m mrad
emittance. Space charge field of the beam is obtaindioton beam with distribution, Eq. (4), in nonlinear

from the Poisson's equation (3): focusing field, Eq. (7).
Ep(r) = | erf(ﬁ) (6) 3 SELF-CONSISTENT BEAM DISTRIBUTION IN
2negfer RZ ’ CONTINUOUS FOCUSING CHANNEL

Inverse self-consistent problem is to find unknown
gistribution function via given focusing potential of the
gtructure. In continuous channel with linear focusing field
all self-consistent solutions tend to uniform beam in the
Mimit of high brightness beam [3]. In Ref. [4] this result

was generalized for the case of an arbitrary applied
1 m et 2 3 o R 2 focusing field. It was found that the self-consistent
Eextr) = -+ M (&) (1) £ (0) erf(™>)], (7) stationary particle distribution has such a shape that the
Y ARy Ro Rg lc By Ro space charge beam potentig) $ opposite to external

where | = 4memc¥q is a characteristic value of beam0CUSINg potential
current. Fig. 2 illustrates relationship between space- Up=-y2-Kb Uy, (8)
charge field, total field and focusing field of the structure. + kb

In contrast with distribution functions with elliptical where b= 2IR2/([3yICsZ) is a dimensionless value of

symmetry (for example,' Gayssian distribution), i_n th eam brightness and k is a beam profile parameter (k = 1
considered case total field is not a linear function af "\ iform beam and k = 2 for Gaussian beam)

radius, but is essentially nonlinear functio®.+n Fig. 3 Space charge density of the matched high-
results of beam dynamics study with conserved beag}ightness beam is determined by Poisson's equation
distribution function in the channel with focusing field, 5, = ¢ AU,. Matched beam profile is defined mostly by
Eq. (7), are presented. Required focusing field can Ggcysing potential function and is a weak function of
created in plasma lens. particle distribution in phase space. Time-dependent

Important point is stability of beam equilibrium infocysing potentialU(r,d,t) = Ug(r,0)-cosot can be
nonlinear focusing field. Sufficient condition for stability g,,pstituted by an effective potential

is given by Newcomb-Gardner theorem [2], which states,

that monotonically decreasing equilibrium distribution U ext(r,0) :qEz (r,0) )

function of Hamiltoniandf/oH < O is stable with respect exttt amywd

to perturbations. Distribution (4) as well as most of

realistic beam distributions satisfies stability condition. if phase advance of particle oscillations per period is
small enough (smooth approximation).

where | is a beam current afidis a particle velocity.
Combination of total field, Eq. (5), and space charg
field, Eq. (6), gives the expression for the require
focusing field of the structure to maintain bea
distribution:



4 BEAM TRANSPORT IN QUADRUPOLE Pb=po (1 +10acos 4 +25418), (15)
CHANNEL WITH OCTUPOLE COMPONENT ’

h o f i . where 3=Gg/G2 is a ratio of field components.
Matched conditions for nonuniform beam requiregquipotential lines Wy (r,d) = C are close to square.

the focusing field to be highly nonlinear function ofyjaiched beam density, Eq. (15), is a decreasing function
radius. Consider an uniform four-vanes quadrupolgf and v coordinates. whete=0. 9®. but increasin
focusing structure with octupole field component. X_ y i ' - W qP‘T 1Y ut Ing
Electrostatic potential of such structure is given by function of intermediate x-y direction, whete =4%.
Equipotential line truncates beam in such way, that
U(rd,t) = (G2 12 cosap + G4 r cos4p ) sinwet, (10) realistic beam with monotonous decreasing density
2 4 function of radius remains approximately matched with

. i . guadrupole-duodecapole focusing structure (see Refs. [1]
where G is a quadrupole field gradient4@& an octupole and [4] for more details).

field component. Oscillating field (10) creates the

effective scalar potential 6 MATCHED BEAM IN QUADRUPOLE
, CHANNEL WITH HIGHER ORDER
Uext(r.¢) =%“—g % r’+ & r'cos2p + i; ],  (11) COMPONENTS
A

Including of higher order terms in quadrupole
wherepo = q G )\Zl(w@n mc®) is a smoothed transversechannel makes an analysis complicated. Consider
oscillation frequency = 2rc/w, is a wavelength, and structure with potential
a1 =G /G is a ratio of the two field components.

Equipotential lines of the effective potential (11) ar — (G2 2 Gs 6 Gio (10
transformed from circles at small values of radius (r), %J(r,q),t) ( 2 - cosP + 6 ~ cos@ + 10 rcosl®
distorted ellipse at larger r.

Space charge density of the matched high-brightness + Gaa (14 cos14) sin wet . (16)
beam in the considered channel is given by: 14

Po(r,d) = po[1 + 6 a r’cos2p + 9a&r] . (12) Matched beam distribution is given by

Beam with distribution of (12) is maintained in thep(r,d) = po[1 + 10 fascos4 + F(18accosd + 258)

channel with effective potential (11). Due to the term

cos2p, space charge density of (12) is a decreasing 169f%d4 + r*3(26a4 cos1® + 90 & awo cos4)

function with x-coordinate, but increasing function with

y-coordinate, beingfr= x* + y2. +r'8(81 &o + 130 @ a4 cos®)+234F%;y0 arg cosd],(17)
Realistic beam distribution has monotonically

decreasing density function with radius. Goodwhere ag = Gio/G2 and a4 = G14/G2. Higher order field

approximation to realistic beams is a distribution of th&eomponents result in more round matched beam

form pp=po [1 - (r/R)?]Z, which is close to the truncated boundaries, but in the same t.ime in more non—unifqrm

Gaussian distribution. Realistic beam is expected to Hatched beam profile with increasing - decreasing

matched in x-coordinate, but mismatched in y-coordinatinctions of azimuth angle. Realistic beam profile

After sufficiently long transport, beam will be becomes essentially mismatched with the function, Eq.

mismatched with such channel due to coupling between(47), at the beam boundary, where effect of high order

and y coordinates. Therefore, utilizing octupolefield components makes beam matching difficult.

component in a quadrupole channel is not enough #8cluding of higher order, than duodecapole, field
provide beam matching. component does not improve matching of realistic beam
with the structure.
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