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Abstract
   In this paper, a new method that can diagnose the  cell
frequencies in a cavity chain without a perturbing probe
is presented.  The cell frequencies and couplings between
cells are estimated in terms of measured pass-band
performance. This method can simplify tuning processes
and make the tuning of a sealed cavity possible.  It has
been well checked with some examples.

1. INTRODUCTION

  To research and manufacture a linear
accelerator, it is necessary to tune the cavity
carefully.  In order to determine the tuning
direction of each cell, the ordinary means is to
insert a pair of perturbing probes into the cavity
to measure each cell frequency cell by cell;  therefore, it
takes much time and work.  It would be inconvenient to
tune a long cavity or a non-uniform one.  Moreover, if a
sealed cavity becomes out of shape in the course of
sealing or installing, its detuned state can not be
diagnosed with perturbing objects.  On the other hand,
for a superconducting cavity, field flatness is strictly
demanded, thus  more careful tuning is required.  But
when the cavity is under operating conditions and in a
bath of liquid helium, it is much more complicated to
measure the cell frequencies with perturbing probes.
With the development of computer science, numerical
computation and intelligent instruments, an important
task is to develop a method that can estimate each cell’s
frequency without  perturbing probes.
  In the early part of 1980’s, while testing a
superconducting cavity in CERN, E.Hable and
J.Tuckmantel developed a method based on a coupled
resonant model that can calculate each cell’s frequency
through measured dispersion frequencies of the cavity[1].
Their cavity was a uniform single period one consisting
of 5 cells.  Because of superconducting, loss of each cell
could be ignored.  The varying range of each cell’s
frequency was assumed small, so it was treated as a first
order perturbing problem.  J.Sekutowicz developed a
method using measured dispersion frequency and its
relevant field distribution to calculate each cell’s
frequency[2].  This method can reduce tuning work, but
can not be used in a sealed cavity.
  In this paper, a general objective is discussed, which
concerns a cavity that has a long or non-uniform chain,
and loss of each cell is considered.  The fundamental
method is by means of the passband information obtained
from an RF network analyzer and computer data

acquisition system to calculate each cell’s frequency.  A
special calculating program is designed and has been
well checked by theoretical values.  Some experimental
results are also given.

2. FUNDAMENTAL  METHOD

    Fig.1  The data acquisition system of the pass-band performance
               of a coupled cavity chain

    As shown in Fig.1, the pass-band performance of
cavity is measured from an RF network analyzer.  The
amount of measured data are determined by frequency
span and step and can be adjusted as needed.  The
measured results are illustrated by the pass-band
performance curve )(Fρ . ρ  and F are voltage

standingwave radio and frequency.  The measured data
are analyzed by a PC computer.
    In general, each pass-band performance of N-cell
accelerating structure includes  N dispersion modes
( ii F,ρ ).  A typical pass-band performance curve )(Fρ is

shown in Fig.2.

Fig.2  A typical pass-band performance curve )(Fρ
                           of coupled cavity chain

   Of course, the pass-band performance )(Fρ  can be

also calculated directly.   The fundamental method is
based on the equivalent circuit model of a coupled cavity
[3] (shown in Fig.3).  The matrix equations of coupled
circuit consists of such elements as  ioiii kkQf 1,,,  and β
. if  and iQ are the resonant frequency and quality factor
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in the ith cell (i=1,2,.....N); k i (i=1,2,......N-1) and k i

(i=1,2,.....N-2) are the nearest and next nearest
neighbour couplings between cells, respectively. β  is the

coupling factor between  input waveguide and coupled
cavity chain.
    If f Q k ki i oi i , β  and the position of coupler are

known, ρ ci iF  can be calculated by solving the

matrix’s eigenvalue equations of the coupled cavity
chain.  In the following, the letters with the subscript “c”
or “m” represent calculated or measured results,
respectively.  The letters with bars are used to express the
related row vectors.
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    Now we want to solve the intrinsic parameters of each
cell from the measured characteristic parameters of the
coupled cavity chain.  In a mathmatical sense, this is a
reverse problem of the matrix’s eigenvalue.  If the
problem can be solved,  diagnosing the cell frequencies
of cavity without introducing any objects into cavity is
possible.
    The previous method to solve the problem was only
suitable for a short single- or bi-periodic structure[4].
Cell parameters are (f Q k k0 0 0 1, , , ) or

( 02121 ,,,, kQQff , 1211,kk ).  For a superconducting

structure, the quality factor in each cell is very high and
the loss can be ignored;  therefore, only a few cell
parameters need to be determined.   If the number of
cells (N) is more than that one of the cell parameters in a
cavity, the least-squares method can be used to estimate
the cell frequencies and couplings between cells from the

measured N dispersion frequencies 
v

Fm .   In this paper, a

method to be suitable for more common structures is
developed, in which measured pass-band performance

)(Fmρ  and  dispersion modes ( mm F
v

v

,ρ  ) are used to

estimate the cell frequencies and couplings between cells.
A special computer method and program are described in
next section.

3. DESCRIPTION OF CALCULATING METHOD

  In order to simplify the numerical process and consume

less time, at the beginning, it is supposed that 1k
v

 and Q
v

are known and equal to their designed data.  Only 2N

parameters ( β,, 0kf
vv

) need to be found.

    The following goal function is defined,
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   w  is a weighted factor
   In our calculating program, Newton and Simplex
Methods are combined;  therefore, this program has such
advantages as wide initial data, quick convergence and
high precision.  The calculating method is as follows.

   First, a set of guess values 0, kf
vv

 and β  with a wide

scale are taken as the initial data of Simplex method.
According to the error crition ( 1EPS<ε )
or the maximum number of constraints expected
( MOF ), the solutions that are close to the true one are
found.  Then taking the solutions as the initial data of
Newton method,  the more accurate solutions are
determined.  If  divergence appear in Newton method,
Monte Carlo (MTC) method will be used as a back-up

tool.  Because different groups of β,, 0kf
vv

 may get same

dispersion frequencies cF
r

(= mF
r

) and cρv (= mρv ), the

measured pass-band performance )(Fmρ  is used.  If the

Fig.4  The flow chart of  program

error ρ∆  is larger than Err, the scale and cri in Simplex

method need to be modified and a new cycle begins.  At

last, the set of parameters ( β,, 0kf
vv

) with satisfactory
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Fig.3  Equivalent circuit of a coupled cavity
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)(Fcρ  are found and printed out.  The flow chart is

shown in Fig.4

4. NUMERICAL RESULTS AND DISCUSSION

    First, the method is checked using theoretical
values.  The cell parameters in a coupled cavity chain
are given.  Solving its matrix eigenvalue equations,
the pass-band performance )(Ftρ , dispersion

frequencies tF
v

 and related tρv  are obtained easily.

Here, the parameters with subscript “t” represent the
given or theoretical values.  The calculated
characteristic parameters are assumed to be measured
ones and used to estimate the cell parameters of the
cavity.  Several S-band 11-cell bi-period cavity chains

are discussed.  tf
v

 , tk0

v

 and tβ  are taken random in

the range of 2960-3020MHz,  0.0195-0.0395 and 7-
20, while the initial guessed data are all taken as the ones
of its tuned state, 2998MHz, 0.0215 and 15.  A set of
typical calculated results are listed in Tab.1.  From
Tab.1, we can find that the estimated data are in

agreement with  tf
v

 , tk0

v

 and tβ   very well.  The max

error of each cell frequency is less than 123KHz, and the

max relative error of  tk0

v

 and tβ  is less than 5.e-3 and

9.e-4

Tab.1  S-band 11 cells bi-period cavity
(Q Qi i− = = , k =0, k =0.0395)

Then, a 6MeV S-band model cavity consisting of 11 cells
is analyzed.  Both the cell parameters and characteristic
informance are measured.  Using the method, the cell
frequencies and couplings between cells are estimated
from the measured characteristic informance. All these

data are shown in Tab.2.  The initial guessed data  inf
v

 ,

ink0

v

 and tβ  are taken as the ones of its tuned state.

Comparing the estimated data and measured data,  the
max error of each cell’s frequency is less than 900KHz.
It is in our measuring accuracy.  The difference between
the calculated and experiment data is larger than that one
between the calculated and theoretical data in Tab.1.

The main factors are the inaccuracies of known Q
v

 , 1k
v

and  the error of experimental data.  If  Q
v

 , 1k
v

 are

treated as unknown values and are diagnosed too, a more
precise solution can be obtained.

Tab.2  6MeV 11 cells S-band model cavity
       (Q Qi i− = = , k =0, k =0.0395)

5. CONCLUSIONS

   In this article, a new method that can diagnose the cell
frequencies in a cavity chain without perturbing probes is
described.  The fundamental method is by means of  the
measured pass-band informance to calculate each cell’s

frequency.  A special computer program is designed
and has been well checked by some examples.  In
order to obtain more precisise solutions, we are

treating Q
v

 , 1k
v

 as unknown values;  therefore more

cell’s parameters need to be diagnosed.  Now we are
working on it.
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Ft ∆F ρ t ∆ρ f t ∆f Kot ∆K
 2962.19  0.03  99.90  0.14  2997.47  0.02  0.0403  0E+0

 2968.03  0.03  2.50  0.28  2997.90  0.51  0.0221  5E-3

 2972.82  0.03  95.88  0.44  2997.89  0.10  0.0217  9E-3

 2980.20  0.03  2.51  0.25  2998.44  0.01  0.0225  2E-2

 2988.90  0.03  300.0  0.03  2997.83  0.02  0.0216  1E-2

 2998.34  0.03  1.67  0.27  2998.43  0.06  0.0219  5E-3

 3008.04  0.03  81.13  0.02  2998.10  0.34  0.0216  5E-3

 3016.90  0.02  2.58  0.23  2998.60  0.06  0.0222  1E-2

 3024.29  0.03  44.56  0.48  2997.52  0.90  0.0217  9E-3

 3029.56  0.01  2.18  0.16  2998.23  0.07  0.0217  5E-3

 3034.37  0.03  42.18  0.00  2999.07  0.04  11.000  7E-2

Ft ∆F ρ t ∆ρ f t ∆f Kot ∆K
 2964.76

1
 0.004  2.275  4E-3  2983.00  0.123  0.0213  0E+0

 2968.02
6

 0.005  20.07  3E-3  2999.02  0.085  0.0212  5E-3

 2973.30
5

 0.003  25.91  3E-3  2997.14  0.014  0.0219  0E+0

 2979.29
8

 0.002  3.339  5E-3  3000.15  0.019  0.0220  0E+0

 2985.85
0

 0.007  54.71  6E-3  2996.17  0.102  0.0219  5E-3

 2995.05
3

 0.002  1.035  2E-3  2998.86  0.060  0.0218  5E-3

 3004.20
5

 0.003  67.58  3E-3  2996.07  0.019  0.0217  5E-3

 3011.83
0

 0.000  3.495  2E-3  2988.60  0.060  0.0219  0E+0

 3020.70
4

 0.001  3.175  8E-3  2998.90  0.019  0.0219  0E+0

 3026.38
7

 0.002  20.89  8E-3  3002.03  0.036  0.0218  0E+0

 3029.28
7

 0.002  4.713  4E-3  2996.11  0.032  9.0000  9E-4


