APPENDIX

CATALOGUE OF ISOCHRONOUS CYCLOTRONS

F.T. Howard
Oak Ridge National Laboratory

(*)
(Not presented)

From previous tabulations and correspondence and through conversations during the Conference, the list of isochronous cyclotrons now includes 44 projects; the detail specifications are tabulated below. The list includes 15 machines in operation, 11 under construction, 7 in engineering and design, and 11 studies and proposals still awaiting funding.

The first operating isochronous cyclotrons were, of course, remodeled conventional machines. These are rapidly being followed, however, by new and larger cyclotrons specifically designed to extend isochronous operation to energies previously inaccessible to fixed-frequency machines, and usually to provide the advantages of variable energy. There are four proposals for high-intensity isochronous cyclotrons in the 500 - 850 MeV energy range, to be operated as meson factories. At present, however, there appears to be no active interest in the 100 - 500 MeV range.

Apparently, medium-energy cyclotron designers are beyond the model building stage. Only one development model is under construction, and all projects at the engineering design, study, and proposal levels are for full-scale research machines.

This tabulation includes only those cyclotrons in which the magnetic field is designed to provide isochronism, that is, machines with radially increasing average magnetic fields and with azimuthal field variations to provide the focusing forces. Not included are a few conventional cyclotrons in which simple Thomas shims or AVF coils have been introduced to provide some axial focusing. Examples are: the 70-inch Cyclotron de Saclay, the 52-inch Markle Cyclotron at MIT, and the Los Alamos Variable Energy Cyclotron.

The rapid strides in the art and science of accelerator design, in general, are impressively demonstrated by the sophistication of the new generation of cyclotrons described at this Conference, especially when one recalls that an early paper on linear accelerators¹), published only 35 years ago, was cited by E.O. Lawrence², ³) as the initial stimulus in his accelerator career — and when one further observes that the author of that early paper is a fellow participant in this Conference.

References

- 1. R. Wideröe, Archiv für Electrotechnik 21, 387 (1928).
- 2. E.O. Lawrence, "The Evolution of the Cyclotron", Le Prix Nobel en 1951, p. 127.
- 3. M.S. Livingston, "History of the Cyclotron", Physics Today 12, 18 (1959).

^(*) Operated for the USAEC by Union Carbide Corporation.

ISOCHRONOUS CYCLOTRONS, SPECIFICATIONS

		Status Energy (MeV)		Beam, Goal -				Magnet							RF System						
				int (μA)	Ext (μA)	Orbit, r max (cm)	Pole dia (cm)	Gap min (cm)	Sect	Spiral max (°)	AVF Coils (pr/sect)	Circ Trim Coils (pr)	Av Field at r max (kG)	Total Power (k\forall)	Dees (No, °)	Dee Apt (cm)	RF (Mc/s)	Power max, in (kW)	Energy Gain, max keV/turn	Dee Tuning	Comments
Canada	Winnipeg	Const (1964)	≦ 50p*	100	1	53	117	2.5	4	49	0	0	20	120	2, 45	2.5	14-29	50	100	MS	Temp reg Invar shims
CERN	Geneva	Study	850p	100		437			8	60			12				9.4			FF	Meson factory
France	Grenoble Orsay Orsay Saclay	Eng (1966) Const (1965) Const (1963) Const (1963)	≦60p* ≤30p* ≤68α* ≤25p*	200 200 1000 100	20 20	80 47 85 56	200 110 200 120	14 16 21 14	4 4 3 3	45 35 0 35	3 0 5 3	9 0 0 11	15 17 14.3 15	250 250 400 140	2, 90 1, 180 1, 180 1, 180	4 4.5 5 2.5	10.5-21 10-25.2 4-10.5 7-22	60 100 300 85	120 200 300 100	MP MS MS MS	CSF machine Alloy shims Alloy shims Philips machine
Germany	Julich Karlsruhe	Eng 1962, in use	≦90d 50d	50 100	10 10	107	320 225	6 8	3 3	Yes 0	5	0	14.7	30	3, 60 3, 60	4	33	70	300 240	FF	AEG study AEG machine
India	Calcutta	Study	≦ 25p*																		Would be purchased
Italy	Milan	Const (1964)	≦ 45p*	100	10	70	166	11	3	0		8	14.1	200	1, 180	3.6	17-22	120	140	MP	Pole tips contoured
Japan	Osaka	Study	≦40p*	500	50	62	140	15	3		2	7	16		1, 180	3.5	7.5-22.5	120	160	MS	
Netherlands	Amsterdam Delft Eindhoven Eindhoven Groningen	Const (1964) 1958, in use 1963, in use Const (1964) Design (1968)	≤ 25p* 12p ≤ 25p* 27p ≤ 50p*	100 500 100	20 20 10	56 34 56 57 115	140 86 120 142 280	15 14 16 25	3 4 3 3 3 or 4	45 0 35 48	3 0 3	11 0 11	15 14 15 13.4 14	140 140 300	1, 180 1, 180 1, 180 1 1, 180	2.5 5.6 2.5 3 4	7-22 21 7-22 20 5-15	85 85 300	100 25 100 100 140	MS FF MS FF	Philips machine 1st isochronous cyclotron Philips prototype Philips; isotope production Philips machine
Switzerland	Zurich	Study	500p	100		490	1000	8	8	25	7		7.5	400	4 cav	5	60	400	1000	FF	Injection at 70 MeV
USSR	Alma Ata Dubna Leningrad Moscow	Design 1959, in use Const (1963) 1961, in use	13d ≦32d*	20 300	70	53 69	150 120 69 150	8 16	6 3 3	75 Low 0	,	,	14	55 200	1, 180	4	10.4 7-21	15	70	FF	6
UK	Amersham Birmingham Harwell Harwell	Design 1961, in use 1959, in use Const (1964)	27p ≤ 11d* 3p ≤ 50p*	1000 1000 500	250 50	57 46 20 76	142 102 56 178	16 7.6 10 19	3 3 3 3	48 0 0 42	2 0 3	8 12 12	16.7 13.4 15.8 13 17	40 100 750	2, 180 1, 180 1, 180 1, 180 1, 180	5.8 5.6 2.5 5 4.1	7.8-13 21 7-16 15-20 7.2-23	120 45 20 445	280 60 60 200	MS FF MS MS MS	Converted 1.5-m machine Philips machine lons injected axially Model of 70-in.
USA	Ann Arbor Argonne Berkeley Boulder Brookhaven Claremont, Cal Davis, Cal E. Lansing Los Angeles Maryland NRL (Wash) NRDL (San F) Oak Ridge Oak Ridge St Louis Texas A&M	1963, in use Study 1961, in use 1962, in use Design 1960, in use 1962, in use Design (1965) Const (1964) 1960, in use Study Proposed Eng (1965) 1962, in use Proposed Const (1963) Proposed Const (1963) Proposed	≤ 37p* ≤ 70p* ≤ 60p* ≤ 60p* ≤ 2.5p ≤ 12p* 2.5p ≤ 12p* ≤ 50p* ≤ 50p* ≤ 50p* ≤ 75p* ≤ 100p* ≤ 75p* ≤ 30p* ≤ 30p* ≤ 30p* ≤ 15p* ≤ 15p*	1000 1000 1000 300 25 400 1000 170 1000 1000 1000 200 1000 1000	250 200 100 100 50 100 500 150 200 100 100 100 100 100 50	93 99 60 64 25 25 71 51 1036 99 80 84 80 584 58 99	211 224 132 152 58 60 193 163 125 1113 224 193 178 193	17 19 19 12 19 10 4.4 17 2.5 76 19 19 5 19	3 3 4 3 6 3 3 4 6 3 3 4 6 3 3 4 4 6 3 3 4 4 4 4	43 60 56 45 0 45 30 0 47 78 56 30 56 30 Low 56	0 5 5 0 1 0 0 4 6 4 5 4	12 17 17 1 1 8 0 9 10 8 8 17 17 10 9 10	15 17 17.1 13.2 14.65 9 19.7 14 20 3.1 17 17.2 18 14 13.2 15.7	200 1036 100 200 3 45 140 120 3500 460 2000 2000 150 2000 98	2, 180 1, 180 1, 180 1, 180 1, 180 2, 110 1, 180 2, 110 1, 180 1, 180 1, 180 1, 180 1, 180 1, 180	3.2 3.8 3.8 4.8 2.5 1.5 4.4 2.5 20 4.1 4.8 2.5 4.8 10 3.2 3.8 3.8	6-16 6-20 5.5-16.5 7.5-21.3 9-27 13.9 15-30 7.5-22.5 13.5-21.5 26.5-29 11.31 6-19.5 7.5-22.5 10-30 7.5-22.5 13.7 or 20.6 7.5-22.5 8-24	360 350 100 150 2.5 20 240 1780 100 650 205 650 800 120 650	280 140 150 200 34 100 270 90 400 140 200 300 200 1000 120 150 180	MS MP MS MP+MS FF MS MP MP MP MS MS MP MS	Beam testing (April 63) Deflecting H ⁻ ions Conversion of 60-in. For undergraduate instructio Old 60-in. Crocker magnet Double mode RF Deflecting H ⁻ beam To accelerate neg ions Brobeck Eng Horizontal "ORIC" Movable iron shims Vertical med plane Model testing Conversion of 45-in. Copy of LRL 88-in. Conversion of 50-in.

^{*}Also other ions.
MS Movable short
MP Movable panels
FF Frequency fixed.