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A comparison between the numerical and analytical computations of the electric field in the spiral inflector is presented in this paper. 
Stochastic beam simulation is carried out in order to clarifY the effects. Both approaches lead to the same results when the radial emittance is 
considered. However, a remarkable difference is obtained in the case of axial emittance. Moreover, the longitudinal emittances differ 
drastically. This is mainly due to the v-component of the fringe field which is usually neglected in the analytical approaches. 

1 Introduction 

Quite a number of papers have treated the spiral inflector, 
since Belmont and Pabot [1] published their well known 
article on that subject. Two approaches to electric field 
computation have been used throughout these papers: (i) 
numerical field mapping and (ii) analytical field 
approximation. The former usually relies on a 3D solver of 
the Laplace equaticn, such as RELAX3D [2], while the 
latter applies some analytical expansions according to the 
curved surfaces of the inflector electrodes [3]. Both of 
theme are implemented into the CASINO code [4] which is 
a widely used tool for inflector analysis. The intention of 
this paper is to present a comparison between these two 
approaches. The same subject has been already considered 
in Ref. [5] where a very well agreement of the two methods 
has been reported. However, our results are quite different, 
as shown in the last section of this paper. 

1.1 Central trajectory and optical coordinate systems 

The role of the spiral inflector is to bend the beam for 90° 
from the axial direction onto the median plane of the 
cyclotron. To achieve that, the shape of its electrodes must 
be designed so that the central trajectory obeys the well 
known equations that can be cast in the following form: 

Xc = 1t(I-sinkOsinO -coskOcosO) 

Y c = It (sin kO cos 0 -coskOsinO) 

Zc =A(sin8-1) 

k = AIRm +k' 
, It =A/(k 2 -I) (1) 

where 8 is the angle of inflection that varies from 0 
(inflector entrance) to rr.12 (inflector exit), A is the electric 
radius, Rm is the magnetic radius and k' is the tilt 
parameter. The above equations assume that the inflector 
exit is in the median plane (z = 0), while the inflector 
entrance is in x-y plane at the distance z = -A. One has to 
mention here that the above definition of the inflector 
parameter k differs for factor 2 from its usual definition. 

In the analysis of the spiral inflector it is common 
practice to introduce an optical coordinate system (u, h, v) 
that travels along the central trajectory (xc,Yc,zC>. The 
direction v coincides with the central particle velocity, 

e v -f cosk8sin8+ Jsink8sin8+kcos8 

(2) 

h is normal to v and lies in x-y plane, 

and u is the direction of the electric field defined as: 

(4) 

The vectors (i,],k) and (eu ,eh ,ey) are the unit vectors of 

the axes (x, y, z) and (u, h, v) respectively, and the dot 
denotes the time derivative. 

The above coordinate transformation can be presented 
in the following matrix form from which it is easy to see 
that it consists of two consecutive rotations: one around the 
z axis and the other around the y axis. 

eu cosO 0 sinO coskO -sinkO 0 i 

o 1 o . sinkO coskO 0.] (5) 

-sinO 0 cosO o 0 1 k 

When a tilted inflector is considered, however, Eq. (5) 
is not sufficient. In that case it is useful to define an 
additional local coordinate system by rotation of u-h plane 
around the v axis for an angle .;, i.e. 

e; cos'; 

e£ sin'; 

ey 0 

- sin'; 0 eu 

cos'; o· eh 

0 1 ey 

( A+Z) , .; = arctg k'~ (6) 

Now, the electric field is in the direction e;. Its u 

component bends the particle trajectory in vertical plane, 
while the h component is analogous to the magnetic field. 
However, the former is no longer constant due to the tilt. 
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To get a constant value, the electrode gap d must follows 
the variation of cos~ , i.e. 

d= ~ U) 
JI + (k' sinB)2 

where do is the gap at the inflector entrance. 

2 Inflector model and electric field computation 

2.1 Numerical computation of the electric field 

The inner surfaces of the electrodes represent actually two 
ruling surfaces. They can be specified [6] by two parallel 
lines that rule around the central trajectory at the distance 
u = ±d / 2 . In the computations here presented we rather 
applied a solid modeling method instead to cope with such 
complex surfaces. There are two advantages of this 
approach: (i) one can use well developed CAD methods, 
and (ii) the complex shape of both the inflector and the 
housing can be easily specified. 

The electrode gap can be represented as a union of a 
number of infinite cylinders of radius di2 whose axes are in 

e; direction along the central trajectory. Then, to get the 

electrodes, this gap should be subtracted from a spatial 
domain that represents the inflector body. It is worthwhile 
to mention here that the inflector machining is usually 
done in that way. The infinite cylinder actually represents 
the bore made by the drilling machine. 

To do the solid modeling we applied the RFG 
subroutine package [7,8]. The electrode gap is modeled by 
60 cylinders (1.50 degrees of inflection). The inflector body 
(a kidney shaped spatial domain) is represented by 9 
primitives, while 10-20 primitives are needed to model the 
housing depending on its actual shape. When the solid 
model is specified, the boundary condition problem of the 
Laplace solver reduces to the point inclusion problem. 

To compute the electric potential we applied an over­
relaxation finite difference method similar to RELAX3D. 
The calculations have been carried out on a mesh of 
153xl81x203 grids with 0.25mm cell width size that 
results in -5.6 millions of points. The typical computing 
time is 1-2 hours on a Pentium PC computer running on 
166 MHz. When the electric potential map is computed, the 
calculation of electric field is performed by 5 points 
numerical differentiation. 

2.2 Analytical approximation of the electric field 

To this end we applied the formalism of the CASINO code. 
The first order expansion from Ref. [5] is used in order to 
calculate the field variation inside the inflector. This rather 
complicated formula can be simply expressed as follows, 

- E r - 2-] M = __ 0 -LCosB(Gx Ar)- (1+kk'sin B)(Ar -h,) (8) 
Acos~ 

where M is the variation of the electric field, Eo is the 
nominal field intensity, Ar is the displacement from the 

central trajectory, and the vector G has the following form. 

G = -(k'COS q +_k_)e; +k'sinqe; 
cosq 

(9) 

It is assumed that the fringe field lies solely in the e; 
direction. Its magnitude is computed similarly to the 
CASINO code by the following formula 

E = Eet [1 + tanh(a(± (s - se - g) / g +0))] (10) 
2 

where s is the path length along central trajectory, s. is the 
location of the inflector entrance (or exit), g is the distance 
between the inflector and the grounded screening electrode, 
and the constants a and 0 are taken from CASINO, i.e. 

1.12-gld 

o = 2.794 - e 1.077 , 
0.811 

(11) a= 
0-0.641 

3 Results of numerical simulation 

3.1 Inflector parameters 

In order to clarify the effects of the two methods of electric 
field computation we considered a spiral l.illector with the 
following parameters: 

Table 1: Inflector parameters 

Parameter Value 
Magnetic radius Rm 18.2 mm 
Electric radius A 25.0 mm 

Tilt k' -0.44 
Inflector parameter k 0.9336 

Maximal electrode gap do 7mm 
Electrode voltage V ±8.0836 kV 

This is one ofthe inflectors which is going to be used in the 
VINCY Cyclotron [9]. Therefore, the inflector housing is 
specified by the central region of this cyclotron. 

3.2 Inflector models 

In order to get an insight into the electric field effects, six 
inflector models have been considered: 

Proceedings of the 15th International Conference on Cyclotrons and their Applications, Caen, France

537



(1) Ideal inflector (the field off the central trajectory is 
equal to the field on it, with no fringe field). 

(2) Analytical model of the electric field according to Eqs. 
(8) to (11). 

(3) Numerical model that considers only the inflector 
electrodes in free space. 

(4) Numerical model that includes the inflector housing. 
(5) Numerical model that includes both the housing and 

two grounded electrodes (at the entrance and the exit) 
with a cylindrical hole of 6 mm diameter. The distance 
g between the inflector and the grounded electrodes is 
5mm. 

(6) The same as the previous one, but the distance g is 
decreased to 2 mm. 

Figure 1 presents both u and h components of the electric 
field computed at the points u= Imm and h=2mm off the 
central trajectory. From the results of the numerical models 
one can see that the fringe field increases with the increase 
of g. The value g=2mm is adopted as the minimum one 
that satisfies the Kilpatrick criterion [10]. The results show 
a good agreement between the analytical approximation 
and the numerical solution for the realistic inflector model 
(g=2mm). 
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Figure 1: Electric field for different inflector models 
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Figure 2: v component of the electric field 

Figure 2 presents the v component of the electric field in 
the case of the realistic inflector model. The results are 
computed in the points u=lmm and h=-4mm to 4mm. One 

can notice a very large variation of the fringe field. Taking 
into account that this component is negier;ted in the 
analytical approach, one may expect significant effect on 
the beam behavior. 

3.3 Numerical beam simulation 

Stochastic beam simulation is carried out for all the six 
models. Monoenergetic and continuos beam with Gaussian 
distribution has been considered. 80n mm·mrad 
uncorrelated elnittances have been assumed in both 
transverse planes 9 mm before the inflector entrance. The 
output emittances have been calculated 20° after the 
inflector exit. 
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Figure 3: Radial output emittance for the analytical model 
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Figure 4: Axial output emittance for the analytical model 

Figures 3 to 5 show the radial, axial and longitudinal 
output emittances, respectively, in the case of analytical 
approximation. The analogous results for the realistic 
inilector model are given in figures 6 to 8. For both models, 
almost no differences can be observed in the case of radial 
emittances. However, a remarkable difference can be seen 
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in the case of axial emittances. Moreover, the longitudinal 
ernittances differ drastically. This is mainly due to the v 
component of the fringe field. 
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Figure .5: Longitudinal output emittance for the analytical model 
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Figure 6: Radial output emittance for the realistic inflector model 
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Figure 7: Axial output emittance for the realistic inflector model 
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Figure 8: Longitudinal output emittance for the realistic inflector model 

Conclusion 

The difference between the analytical and the realistic 
inflector models implies that for an axial injection to 
cyclotron central region detailed matching calculation, the 
usage of numerically calculated electric field is of great 
importance. Further analysis of this type for different 
inflector parameters is necessary to reveal the range of 
validity of the obtained results. 
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