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Abstract 

An electrostatic storage ring for atomic physics, 
ELISA [1], is at present in operation at Aarhus 
University, and the first results are encouraging. It 
gives us the possibility to investigate in detail the 
features of this new class of machines, and in particular 
the possibilities for future improvements. The 
advantages of an electrostatic storage ring at low 
energy as compared to a magnetic ring are obvious, 
and one of them is the possibility to store different 
particles without readjustment of the optics. However, 
the magnetic and electrostatic fields are different. In 
particular, the particles moving in an electrostatic field 
can change their kinetic and potential energies, since 
the electrical force may coincide with the direction of 
motion. This leads to a coupling between the transverse 
and longitudinal motion, and this effect may play a 
very significant role. Additionally, we investigate in 
this paper the influence of space charge and image 
charges. Two different types of optics have been 
considered. The first was based on spherical deflectors, 
and recently these were changed to cylindrical. The 
experimental observations are described in [2]. In the 
paper, the theory of such machines is developed based 
on motion integrals, and the results of numerical 
simulations are presented. 

 
1  EQUATIONS OF MOTION 

 
ELISA consists of two arcs and two straight sections. 

The arc includes two doublets of electrostatic lenses, 
one 160° electrostatic spherical or cylindrical deflector 
and two 10° parallel plate deflectors. The most unusual 
element from the accelerator physics point of view is 
the spherical and cylindrical deflector. It consists of 
two segments of two concentric spheres or cylinders 
with radius 21  and RR . The plates are long in the 

longitudinal direction and narrow in the transverse 
direction.  
 
1.1  Spherical deflectors 
 

The expression for the electrical field will be derived 
in the approximation of two not truncated spheres. In 
accordance with Gauss’ law the potential between two 
spheres varies as 
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where 0ϕ±  is the potential on the spheres. The usual 

co-ordinate system in accelerator physics is the 
cylindrical system ϑ,, yr  and we also work in the 

same system: yyRrxRs eqeq =−==   ,  ,ϑ , where s  

is the longitudinal co-ordinate along the trajectory and 
x  is the deviation from the equilibrium radius eqR  in 

the horizontal plane and y  is the deviation of the 

particle in the vertical direction. The Lagrangian of this 
system is 
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Due to the spherical symmetry 0=
∂
∂
ϑ
L

 we have 
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Substituting in the first equation the potential (1), we 
have 
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Defining the equilibrium radius from 0=′′r  and 
0=y , we have  
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Retaining terms of order less than two 
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The spherical deflector focuses the particles in the 
horizontal and vertical planes with the same force. 
Both equations in (6) have a sextupolar component, 
and therefore third order resonances should be avoided.   
 
1.2  Cylindrical deflectors 
 

We consider the cylindrical deflector as a candidate 
to improve the performance of ELISA. In accordance 
with Gauss’ law the potential from the internal 
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electrode with radius 1R  to the external electrode with 

radius 2R  varies as 
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where 02ϕ  is the potential difference between the 

electrodes. Using the same technique as in paragraph 
1.1, we have for the cylindrical electrodes 
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For the stationary case eqRr = , when 0=′′r   
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In cylindrical co-ordinates 
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In the horizontal plane the focusing term is twice as 
large as in the spherical deflector, and there is no 
focusing in the vertical plane. Besides, in the ideal case 
there is no coupling with the vertical plane. 
 
1.3  Electrostatic quadrupoles 
 

If the electrodes have potentials 0V± , then the 

electrical gradient is 
2
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2  ORIGIN OF CURRENT LIMITATION 
 

Now we will briefly analyse possible reasons to 
current limitations in electrostatic rings. 
 
2.1  Dipole mode due to image charge 
 

Any charged ion has an image charge due to the 
surrounding metal walls. Due to the different radius of 
the spheres ρ=1R  and hR 22 += ρ and the different 

signs of the curvature relatively to the beam a dipole 
force arises. It is proportional to the beam current and 
to the factor 
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where δ  is the beam displacement from the center. 

The force equals zero, when 
h

h

h +
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1
. Thus, 

shifting the equilibrium orbit byδ , we can compensate 
the dipole force and it cannot represent any serious 
problem for the current limit.  
 
2.2  Influence from space charge  
 

Knowing how the beam cross section depends on s , 
( ) ( )ss mav ⋅+= ωεσσ cos1 , where mε  is the 

modulation amplitude, ω  is the modulation frequency 
and using Courant-Snyder formalism, we can write the 
equation of motion in explicit form  
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The average space charge tune shift δν determines the 
global current limit, when the particle crosses the half 
integer resonance. In particular, for ELISA we get the 
global current limit A6max µ=−GI . However, due to 

the envelope modulation the parametric resonance can 
be excited as well. For the ELISA lattice with the 
spherical deflector ( 65=mε ) the parametric resonance 

occurs, when the current is 70 nA. In reality such a 
deep density modulation is not achieved due to space 
charge itself. We have performed simulations of beam 
dynamics with space charge by the code TrackFMN 
[3]. It has been shown that the current limit for ELISA 
with the spherical deflector is about half a µA and with 
the cylindrical deflectors a few µA because of the 
smaller envelope modulation. 
 
2.3  Finite electrostatic deflectors 
 

In reality the deflector consists of plates, which are 
finite segments of spheres or cylinders and the edges 
distort the field. We have calculated the 3D field by 
MAFIA and determined the "good-field" region for the 
beam to ±8 mm for the spherical deflector and more for 
the cylindrical. 
 
2.4  Longitudinal-transverse coupling 
 

The spherical and cylindrical deflectors have a 

central field symmetry, namely 
nr

E
α∝ , where 

0=
∂
∂
ϑ
L

 and constrmv =ϑ . The angular momentum 

plays a crucial role for the focusing features of both 
deflectors. In particular, if the kinetic energy 

2/2
ϑmvT =  is constant and M  varies, then in the 

horizontal plane the spherical deflector de-focuses and 
the cylindrical deflector is just a drift. But obviously, 
for both of them energy conservation is fulfilled: 
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The last expression shows that the radial motion could 
be considered as one-dimensional motion in the field 
with the effective potential ( )reffϕ consisting of the 

centrifugal potential and the electrical potential. But 
the centrifugal potential is the kinetic energy along the 
ϑ  direction. Therefore such deflectors lead to 
exchange of energy between the transverse and 
longitudinal planes.  

Actually, from the expression (5) we can see that 
each particle is focused around it’s own equilibrium 

radius 2MReq ∝ dependent on the initial angular 

momentum, in contrast to the magnetic ring, 
where mvpReq =∝ . Therefore, the linear equation for 

particles with non-equilibrium angular momentum in 
the horizontal plane is 
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where 0R  is the equilibrium radius for 0=∆M . The 

new equilibrium radius is ( )MMRReq /210 ∆+= . 

Taking into account 000 /// RxvvMM +∆=∆ , where 

0/ vv∆  is the initial velocity spread and 0x  is the 

initial particle deviation, the maximum deviation of the 
new equilibrium orbit is  
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where xε , xβ  are the emittance  and  the β -function at 

the entrance to the deflector.  The expression (14) 
shows how far the potential well is shifted from the 
deflector centre. Obviously, the particle oscillating 
around the new orbit has a higher probability to be lost. 
In particular, stable motion for a parallel 
monochromatic beam, when all particles have 

0=r� and 0/ =∆ vv , is limited by the radius 
cm 5.025 ±=r in the spherical deflector. For the non-

parallel and non-monochromatic beam the stable 
region even is smaller.  

We considered the instantaneous stability in one 
deflector. But what will happen after many turns of the 
particles? Using the condition constrmv =ϑ , we can 

write the change of velocity after one passage through 

the deflector 
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. Now let us call 

that the matrix of the transport channel between two 

deflectors trM . Then after n  turns 
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If the total matrix between two deflectors changes sign 
of the particle deviation )()( xsignxsign −⇒ , the 

conversion of the potential energy to kinetic energy 
will be continued. It is easy to image the opposite 
situation, when the particle will lose kinetic energy and 
increase the potential energy. The process of energy 
conversion has an oscillating character, since the tune 
of the ring is not an integer.  

However, the conversion process is suppressed by 
the edge field, which changes the angular momentum 
at the entrance and the exit of the deflector and 
therefore decreases the equilibrium orbit shift. The 
coefficient of suppression k  is calculated numerically 
and its influence is given from the next expression 
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multiplication of a few thousands matrixes and found 
that the momentum spread grows, what obviously 
causes losses. Due to the different coefficient k  the 
particles increase their amplitude with different 
increment.  

We believe that this mechanism is the main 
mechanism of the reduction in stable motion. 

To reduce the influence of this mechanism we should 
decrease the dependence of the equilibrium radius on 
the initial parameters. In particular, for the cylindrical 
deflector the equilibrium deviation is half that for the 
spherical deflector MMRReq /0 ∆⋅=∆ . Numerical 

simulations of the beam in the real field by the 3D code 
SIMION have confirmed this result and have shown 
the obvious advantages of the cylindrical deflectors. 
 

3  CONCLUSIONS 
 

We have studied the beam dynamics in electrostatic 
rings. Potential candidates to limit the beam intensity 
are the parametric resonance due to modulation of the 
space charge tune shift and coupling between the 
longitudinal and transverse directions. We considered 
two lattices of ELISA and have shown that the lattice 
with cylindrical electrodes is more stable and has a 
higher current limit with respect to both effects.  
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