
Abstract

The author presented a numerical integrator for charged
particle motions, which was based on the Lorentz group
Lie algebra, [1][2], and it was shown that the integrator gave
us quite precise results in integrating the particle energy
and momentum owing to the Lie algebra property.  In gen-
eral, one of difficulties of popular symplectic integrators is
that vector potential expression of electromagnetic fields is
required in the formulation.  This is especially serious in
case of particle simulations in 3D magnetic field.  The pre-
sented integrator shows advantage in this situation too, be-
cause it does not include any vector potential expression in
the formulation.  On the other hand, the Lie algebra prop-
erty did not guarantee the trajectory accuracy and this some-
time caused accuracy degradation on the trajectory calcula-
tion.  In this paper, a method of trajectory accuracy improve-
ment of the integrator is presented.  Beyond this improve-
ment, we can construct quite precise integrator especially
for high energy charged particle motions.

1  INTRODUCTION
Owing to remarkable performance progress of comput-

ers, we do not need to care about the memory size and CPU
time in many situations of computer simulations of physi-
cal phenomena.  And this trend seems to be continued for
the next several years too.  In that situation, main interests
of computer simulations is accuracy improvement.  Espe-
cially, quite high accuracy simulations are often required in
advanced technologies.  The author presented a numerical
integrator for charged particle motions, which was based
on the Lorentz group Lie algebra. [1][2]  To include the Lie
algebra property into the numerical integration, quite high
accuracy of energy and momentum calculation was
achieved.  In addition, one of difficulties of popular
symplectic integrators is that vector potential expression of
electromagnetic fields is required in the formulation.  This
is especially serious in case of particle simulations in 3D
magnetic field.  The presented integrator shows advantage
in this situation too, because it does not include any vector
potential expression in the formulation.  On the other hand,
the Lie algebra property did not guarantee the trajectory
accuracy and this often caused accuracy degradation on the
trajectory calculation.  In this paper, trajectory accuracy im-
provement of this integrator based on the Gauss-Legendre
interpolation formula is presented.  Beyond this improve-
ment, we can construct quite precise integrator especially
for high energy charged particle motions.
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2  LORENTZ GROUP LIE ALGEBRA MAP
OF CHARGED PARTICLE MOTION

In the four dimensional covariant form, the Lorentz force
equation of motion is written as follows,
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where uk is the four velocity, F
ik
 is the electromagnetic fields

tensor, m is particle mass, e is the elementary charge, c is
the velocity of light and ds = c d   (  is the particle
proper time ).  Then it is known that the uk satisfies the
following identity,

u ui i = 1 (2)

This implies that Eq.(1) should have the Lorentz group Lie
algebra property which guarantees the Minkowski norm con-
servation of uk during the transformation with respect to the
parameter s .  This Lie algebra property of Eq.(1) is readily
confirmed to express the field tensor as follows,
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where E and B are electric and magnetic fields, S and K are
so-called “rotational” and “boost” operators, and which are
consists of irreducible representation of the Lorentz group
Lie algebra.
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In case that the electromagnetic fields are uniform and con-
stant in time, Eq.(1) can be analytically solved as follows,
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For nonuniform or varying fields, Eq.(5) should be numeri-
cally calculated to take the parameter s enough small ds,
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therefore in comparison with Eq.(8) one can find that Eq.(9)
has at most the second order accuracy in the approximation
of xk(ds).  And then accuracy degradation in xk(ds) is di-
rectly connected to accuracy of uk(ds) too.  This means that
any improvement of accuracy of xk(ds) is essential for the
formula (9).

3 EVALUATION BY GAUSS-LEGENDRE
INTERPOLATION FORMULA

Under the condition that the Lorentz group Lie algebra
property should be conserved, unique possibility of accu-
racy improvement is evaluation of electromagnetic fields E
and B at an appropriate point xk(s’) (0 < s’ < ds).  Math-
ematically speaking, this appropriate evaluation is just cor-
responding to appropriate selection of integral parameter

 as in the mean value theorem,
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From this mathematical point of view, we shall here deter-
mine the evaluation point of E and B by using the Gauss-
Legendre interpolation formula.  In standard Runge-Kutta
methods for the Hamilton systems,
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the numerical integration is performed in the following for-
mula, [3]
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where the variable X is the canonical coordinates,
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and G(x,p) is the right hand side vectors of Eq.(12),
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Then the concept of the mean value theorem can be intro-
duced to the Lie algebra map in the following form,
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The physical meaning of the identity (2) is just consistency between the particle energy and momentum,
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and the Lie algebra property included in Eq.(5) guarantee this important physical property even in discretized form of
Eq.(6).  In this case, the fields F

ik
 are taken to be constant during the small interval ds, therefore the 4D coordinate xk(s) is

analytically calculated by using the expression of the four velocity uk(s) as follows,
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Finally to unify Eqs.(6) and (8), we can express this integrator in the following form of transfer matrix,
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On the other hand, the Taylor expansion expression of xk(ds) around xk(0) is as follows,
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(where Y
i
 denotes the right hand side of Eq.(13-2)), that is,

the value Y
i
 is adopted as the evaluation point of the elec-

tromagnetic fields E and B.  The Gauss-Legendre formula
which belongs to series of the (implicit) Runge-Kutta
schemes is known as a kind of symplectic integrator too,
which is reason why we adopt this formula for implemen-
tation of (13-2).

4  NUMERICAL TEST
A numerical test for the improved Lie algebra map (16)

is given here.  The numerical test is performed for charged
particle motion (with initial velocity v/c = 0.999999)  in a
magnetic mirror profile. (Fig.1)  Then the fifth order Gauss-
Legendre formula (Table 1) [3]  is applied.  As we predicted,
the trajectory calculation based on the formula (16) shows
same order accuracy as the standard Gauss-Legendre type
of implicit Runge-Kutta method.  In Fig.2 and Fig.3, com-
parison of velocity and the Minkowski norm (2) between
the Lie algebra map and the Runge-Kutta method are shown.

5  SUMMARY
In this paper, a trajectory accuracy improvement of the

Lorentz group Lie algebra mapping based on the Gauss-
Legendre interpolation formula has been presented.  And a
numerical test shows us this improvement effectively give
us good accuracy solution for the charged particle simula-
tion for both of particle velocity and trajectory.
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Table 1  Fifth order Gauss-Legendre Formula

Fig.1   Particle motion in magnetic mirror frofile

Fig.2   Particle velocity evolution
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