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Abstract

In commissioning of an e+ − e− collider, a great deal of
effort is put to search and to remove origin of the luminos-
ity reduction. We have studied luminosity reduction mech-
anisms using computer simulations to help the jobs. We
consider collision among an electron bunch and a positron
bunch; that is, do not consider any multi-bunch effects.
One turn map of beam particles consists of the beam-beam
interaction and a transfer map by lattice. We first focus a
linear map of lattice at the collision point. These effects are
estimated by a strong-strong simulation.

1 INTRODUCTION

Luminosity in e+e− colliders is determined by steady dis-
tributions of two beams (ρ+ and ρ−) at a collision point as
follows,

L =
∫ c

0

dsδP (s′ − (z − z′)/2)dzdz′

∫
dxdyρ+(x, y, z, s′)ρ−(x, y, z′,−s′), (1)

where s which is used as the time like variable is a longitu-
dinal coordinate along the positron beam orbit and c is the
speed of light. δP (s) = Σ∞

−∞δ(s − nL), where L is the
circumference of the ring. Here we assumed the both rings
have the same circumference.

ρ±(x, y, z, s) is distribution function of the colliding e±

beam. We have to understand the motion of each beam
particle to evaluate the beam distributions at the collision
point. The distribution does not depend on an initial condi-
tion due to the synchrotron radiation damping and quantum
fluctuation. At a low particle density, the distribution is
Gaussian in 6 dimensional phase space whose deviations
are determined by emittance and Twiss parameters. As
increasing bunch current, beam-beam interactions become
important, beam blow up and coherent motion occur, and
luminosity is reduced from the geometrical value.

Electrons or positrons in the beam moves be feeling var-
ious actions in an accelerator. The following actions are
essential for studying the collision of two bunches.

• Lattice

• Synchrotron radiation

• Beam-beam interaction

In these actions only the lattice is controllable for us. We
focus a map of lattice at collision point. The map includes
information of closed orbit, tunes, linear optics functions
(β,r, η, ζ[2]) and nonlinear parameters (chromaticity...) at

the collision point. The map at the collision point deter-
mines the complex feature of the beam-beam effect. Closed
orbit, optics functions at except for the collision point affect
to the beam-beam effect only through emittances.

We present effects of the luminosity reduction caused by
following sources.

• Error of closed Orbit

• Error of linear map

• Chromatic deformation of the linear map

We use a strong-strong simulation code to calculate the
beam-beam force [4]. There is no assumption for both of
the beam distributions. The distributions of beams may
vary dynamically due to collision each other. They may
be different from Gaussian distribution. The strong-strong
simulation equips a 2-D poisson solver for an arbitrary
charge distribution of beam. The effective coulomb poten-
tials due to both beams are solved in every turn, and beam
particles are kicked by the potential.

We discuss the beam-beam problem based on an analy-
sis for KEKB. KEKB is an asymmetric multi-bunch e+e−

collider. KEKB consists of two storage ring, HER and
LER, which accumulate e− at 8GeV and e+ at 3.5GeV, re-
spectively. Table 1 shows the design parameters of KEKB
which is important for the beam-beam effect. βx is relaxed
to 1m from the design value of 0.33m.

Table 1: Basic parameters of KEKB

HER LER
Particle e− e+

E 8GeV 3.5GeV
I 1.1A 2.6A

ne,p/bunch 1.4 × 1010 3.3 × 1010

Nbunch ∼ 5000
C 3016m
β∗

x 1m
β∗

y 0.01m
εu 1.8 × 10−8

εv 3.6 × 10−10

ξ ∼ 0.05
νx/νy 0.53/0.11

T0/τx,y,z 2.5/2.5/5.0× 10−4

θc 2 × 11mrad
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2 ERROR OF CLOSED ORBIT

We first discuss error of the closed orbit x±
0 =

(x, px, y, py, z, pz)±0 at the collision point. x±
0 and y±0 are

transverse orbit offset. Though z±
0 is deviation of collision

timing, we observe it as an error of β function discussed
later. p±x,0 and p±y,0 means a crossing collision. In our case,
since beams collide with a finite horizontal crossing angle
θc = 22mrad, small error of px � θc is negligible. We
take no notice of p±z,0. We here investigate the effects of
vertical offset and vertical crossing

2.1 Orbit offset

In the case of flat beam, tuning of vertical offset is more
difficult than that of horizontal. We here present effects of
only vertical offset. When two beams collide with an offset,
the geometrical luminosity is reduced as follows, without
effects of crossing angle and hour glass.

L ∝ exp(∆y2/4σ2
y) (2)

Actually beam blow-up occurs and the luminosity reduced
more. Fig.1 shows the beam size, geometrical and simu-
lated luminosity. The geometrical luminosity includes the
effects of crossing angle and hour glass. The figure and
Eq.(2) show that the geometrical luminosity is reduce to be
77% for the offset of σy . The figure shows dynamical lu-
minosity reduction due to beam-beam blow-up. The beam
blow-up occurs both beam and the luminosity is reduced to
be 55%.
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Figure 1: Luminosity reduction due to vertical offset.

2.2 Vertical crossing angle

The aspect ratio of vertical size for the bunch length is
σy/σz = 5 × 10−4. Vertical crossing angle of the order
of 0.5mrad affects the luminosity geometrically. Figure 2
shows the luminosity reduction due to the vertical crossing
angle. Dynamical reduction is not so strong.
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Figure 2: Luminosity reduction due to vertical crossing an-
gle.

3 ERROR OF LINEAR MAP

We next consider error of the linear map at the collision
point. The transformation is expressed by 6× 6 matrix M ,

x(s + C) = Mx(s), (3)

M is 6 dimensional symplectic matrix, which has 21 inde-
pendent parameters. M is factorized using a block diago-
nalize matrix U and a matrix V written by Twiss-dispersion
functions,

M = V UV −1 (4)

U =


 UX 0 0

0 UY 0
0 0 UZ


 (5)

Ui =
(

cosµi sinµi

− sinµi cosµi

)
(6)

µi = 2πνi νX,Y,Z : Tune (7)

They are 3 tunes (νx,y,z) and 18 Twiss-dispersion pa-
rameters. The factorization of parameters is written in
Ref.[2]. Tune dependence has already been studied using
weak-strong simulation [1], and is being studied using the
strong-strong simulation[5]. We here discuss the luminos-
ity reduction due to error of Twiss-dispersion parameters at
the collision point.

The beam size at low particle density is expressed by
emittance and Twiss-dispersion functions at the collision
point. The emittance is determined by the global char-
acteristics of the lattice, while Twiss-dispersion functions
is local parameters at the collision point. The beam size
Σij = 〈xixj〉 is expressed by

Σ = V ΣnV
t. (8)
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where Σn is a diagonal 6 × 6 matrix represented by emit-
tances,

Σn = diag[εX , εX , εY , εY , εZ , εZ ]. (9)

The transverse beam size is expressed by 〈xx〉 = β∗
xεx and

〈yy〉 = β∗
yεy, if there is no waist error, no x-y coupling

and no dispersion function at the collision point. V is a
diagonal matrix in this case,

V = diag
[√

β∗
x, 1/

√
β∗

x,
√

β∗
y , 1/

√
β∗

y ,
√

β∗
z , 1/

√
β∗

z

]
.

(10)
Error of V enlarges the beam size at the collision point and
reduces the luminosity. We call this as geometrical effect.

The Twiss-dispersion functions affect the luminosity dy-
namically. For example, a relaxation of focused β enlarge
the beam-beam tune shift. X-Y coupling causes a coupling
of the beam-beam tune shift. The luminosity and vertical
beam size were evaluated by the strong-strong simulation
for the Twiss-dispersion error. Figures 3, 4 and 5 show the
luminosity and beam size blow-up due to the waist error,
vertical dispersion error, x-y coupling, respectively.

Figure 3 is result for waist error. The beam blow up is
much larger than geometrical one. In Figure 4, the dynami-
cal effect of the vertical dispersion function can not be also
neglected, though it is smaller than the case of waist error.
In Figure 5, we make 9 model lattices (1 st – 9 th trial) with
εy = 0.02εx using random error of skew quadrupoles [3],
and performed the simulation. The 0-th trial is for no x-y
coupling. Simulation results by a weak-strong method is
overwritten in the figure.
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Figure 3: Luminosity reduction due to waist error.

4 SUMMARY

We performed simulations for beam-beam interactions
to study the luminosity reduction. A strong-strong
simulation[4] is used for the evaluation of the luminosity
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Figure 4: Luminosity reduction due to vertical dispersion
function at the collision point.
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Figure 5: Luminosity reduction due to x-y coupling at the
collision point.

and beam size. We knew various sources which cause the
luminosity reduction. To recover them, we have to tune up
the parameters patiently. If we can measure or guess the
Twiss-dispersion functions at the collision point, it will be
helpful for the luminosity tuning[6].

The author thanks members of KEKB commisioning
team.
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