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Abstract

Observations in stored high-energy beams in circular ac-
celerators show the existence of long-living coherent struc-
tures of solitary wave type. The paper focuses on a collec-
tive kinetic description of such solitary structures based on
an extended Vlasov-Poisson model. Depending on the cou-
pling impedance, on the selected dispersion branch and on
the beam energy in relation to the transition energy various
solutions of this system can be found. Of special interest
is the one, represented by a notch in the thermal range of
the distribution function, for which standard wave theory
would predict strong Landau damping.

1 INTRODUCTION

Intense coasting beams in synchrotrons operating close to
the linear stability limit exhibit a variety of nonlinear wave
phenomena [1], the most prominent ones being coherent
depletion zones in the momentum distribution excited by
an external forcing. An explanation of this collective phe-
nomenon has recently been given in terms of steady-state
solitary hole solutions of the Vlasov-Poisson system in the
limit of a large wall resistivity [2]. In the present paper this
study is extended in a twofold manner: We allow for zero
resistivity, as well, and include the whole range of phase
velocities up to the hydrodynamic limit.

2 BASIC EQUATIONS

Adopting the normalization of Refs. [2, 3] we study the
following set of equations [3]

[∂t + u∂z − ε∂u]f(z, u, t) = 0 (1)

(1 − L)ε′′ +Rε′ − µε = α[Rλ1 + (g0 − L)λ′1] (2)

Eq. (1) is the Vlasov equation and Eq. (2) is a Poisson-
like equation extended by electromagnetic correction terms
which areO(γ−2) whereγ is the relativistic factor,γ � 1.

In (2),α carries the sign of the slip factorη,µ =
(

4πγR0
b

)2

andR andL are the dimensionless resistance and induc-
tivity, respectively. Note that the capacitive space charge
effect is represented by the termg0λ

′
1, with the geometry

factorg0 given byg0 = 1 + 2ln b/a. λ1 is the perturbed
line density and dash means differentiation with respect to
z.

Note also that (2) contains the two known expressions of
“Poisson’s equation” in the limits of strong resistance and
of purely reactive coupling impedance, respectively.

3 STANDING STRUCTURES IN CASE OF
PURELY REACTIVE IMPEDANCES

To get a first impression about the possible structures we
take the limit of a purely reactive impedance,R → 0, in
which case (2) reduces to

φ′′ = µ̄φ− ᾱλ1 (2′)

whereµ̄ = µ(1 − L)−1, ᾱ = α(g0 − L)(1 − L)−1 and
ε ≡ −φ′. Assuming furthermore a standing structureφ(z−
∆ut) with ∆u = 0 and an appropriate solutionf(z, u) of
Vlasov’s equation (1) for a positive bell-shaped potential
hump0 ≤ φ ≤ ψ � 1, as given in (14) of Ref. [2], we
obtain solitary wave solutions of the type

φ(z) = ψsech4
(√

µ̄− ᾱ
4

z

)
(3)

which resembles electron hole (or hump) solutions in
plasma physics [4].

Since it holds for the dimensional potentialφ̃, φ ∼ ηqφ̃,
with q being the electric charge of a beam particle, the
equivalence with the corresponding plasma situation, sug-
gests the following general qualitative picture as shown in
Fig. 1.
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Figure 1: The dimensional electric potentialφ̃ ∼ ηqφ as
a function of space and the corresponding phase space pat-
tern for four different cases (q is the particle charge,η is the
slip factor). In brighter phase space regions the distribution
function is less dense.
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We see that for a positive mass system(η < 0) the center
of the momentum distribution is excavated whereas it is
overpopulated for a negative mass system(η > 0). This
essentially is what Dory’s “mass-conjugation theorem” [5]
predicts.

4 GENERALIZED SOLITARY WAVE
SOLUTIONS

4.1 Kinetic Regime

Next we allow for a finite propagation speed∆u > 0, in
which case the perturbed line density is found to be given
by the half power expansion

λ1 = −1
2
Z ′

r

(
∆u√

2

)
φ− 4b̄

3
φ3/2 +

1
16
Z ′′′

r

(
∆u√

2

)
φ2 + . . .

(4)
which includes and extends (15) of [2]. In (4)b̄ is given by

b̄ =
1√
π

[1 − β − (∆u)2] exp(−∆u2/2) ≡ b̄(β,∆u) (5)

which reflects the status of particles trapped in the potential
well. Note that a notch in the distribution at resonant ve-
locity is described byβ negative. Substituting (4) into (2)
and concentrating on the two limits (i)R = 0, the purely
reactive limit, and (ii)R � 1, the resistive limit, we can
write (2) as

φ′′ = Aφ+Bφ3/2 + Cφ2 ≡ −V ′(φ) (6)

with appropriate constantsA,B,C for each limit that de-
pend on∆u.

By integration of (6) we can find

φ′(z)2

2
+ V (φ) = 0 (7)

with V given by

−V (φ) = Aφ2/2 + 2Bφ5/2/5 + Cφ3/3 (8)

The conditionV (ψ) = 0, whereψ is the amplitude of the
bell-shaped potentialφ, yields the nonlinear dispersion re-
lation (NDR) which becomes

A+ 4B
√
ψ/5 + 2Cψ/3 = 0 (9)

the solution of which determines∆u the phase velocity of
the solitary structure. Making use of (9), we can rewrite (8)
as

−V (φ) = −2B
5
φ2[

√
ψ −

√
φ] − C

3
φ2(ψ − φ) (10)

which represents a two-parametric soliton. ForB = 0 it
holds

φ(z) = ψsech2
(√

−Cψ
6
z

)
(11)

provided thatC < 0 and forC = 0 we get

φ(z) = ψsech4
(√

−Bψ1/2

20
z

)
(12)

provided thatB < 0. Whereas the first one is of hydrody-
namic type (see later), the last one is a true result of trap-
ping.

To see under what circumstances such a solutions exists,
we have to analyze the NDR (9). InsertingA,B andC in
to (8) we find

−1
2
Z ′

r

(
∆u√

2

)
= D (13)

Fig. 2 shows the permissible solutions of (13). IfD is neg-
ative and small,−0.285 < D ≤ 0, we obtain two branches,
the kinetic branch with∆u ≈ 0(1) and the hydrodynamic
branch with∆u� 1.
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Figure 2: The real part of− 1
2Z

′(x), Z(z) being the plasma
dispersion function, as a function ofx = Rez.

In the kinetic thermal regime, the solution is given by

∆u = 1.307(1−D) (14)

where| D |� 1. The existence conditionB < 0 becomes
in the strongly resistive case(R � 1), αb̄ < 0, and in the
purely reactive case(R = 0), ᾱb̄ < 0. Hence below tran-
sition energy(α < 0) b̄ must be positive which, together
with (14), implies

−β > 0.71 (15)

The trapping parameterβ must be sufficiently negative cor-
responding to a depletion zone in the momentum distribu-
tion.

Above transition energy,̄b must be negative and hence
β > −0.71, implying that a hump-like resonant distribu-
tion is an admissible solution.

Hence, the general picture of Fig. 1 can be transferred
to propagating structures as well, valid for both limits of
impedances. (Note, however, that standing resistive struc-
tures of O-type separatrix exist only for beams below tran-
sition energy [3].)
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4.2 Hydrodynamic Regime

Finally, for large∆u we find that(∆u)−2 = −D � 1
and thatB is negligible (no contribution from trapping).
We, hence, haveC < 0, i.e. the situation of eq. (11). An
evaluation of these inequalities shows that KdV-solitons of
type (11)cannot exist in the strongly resistive case. In the
purely reactive case, however, they can exist both below
and above transition energy provided thatL is appropri-
ately chosen. For a beam above transition energy, the ex-
istence condition requires a negative imaginary coupling
impedance i.e. the dominance of inductivity over space
charge.

We conclude that a negative mass instability can satu-
rate in a nonlinear soliton only for zero resistivity and for a
sufficiently large inductivity.

5 CONCLUSION

The collective kinetic treatment of coasting beam dynamics
exhibits a rich world of solitary waves and associated struc-
tures being more intricate than conjectured by DORY’s
“mass conjugation theorem”. They typically rest on a new
type of kinetic acoustic modes propagating with thermal
phase velocities where Landau (resp. Keil-Schnell theory)
theory would predict strong damping. The resolution of
this seeming discrepancy is that the latter is not applicable
due to the involved wave-particle resonance valid even in
the infinitesimal wave limit. These structures remain non-
linear no matter how small their amplitudes are [6].
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