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Abstract

Random and systematic skew-quadrupole errors in the
main dipole and quadrupoles magnets and orbit errors in
the arc sextupole magnets give rise to a linear coupling of
the LHC machine. Operating the machine near the cou-
pling resonance requires an efficient compensation of the
global coupling in the machine. The following report sum-
marises the relative contributions from the various sources
for linear coupling and presents different options for a com-
pensation scheme for version 6 of the LHC optics.

1 SKEW QUADRUPOLE COMPONENTS
IN MAIN DIPOLE MAGNETS

The overall skew quadrupole error of a main dipole magnet
is given by

a2 = a2gM + a2pM + a2tM + (1)
ξ1
1.5

×
√
a2gU2 + a2pU2 + a2tU2 +

ξ2 ×
√
a2gR2 + a2pR2 + a2tR2,

whereξ1 andξ2 are random numbers with a Gaussian dis-
tribution cut at1.5 σ and3.0 σ respectively, a2g, a2p, a2t
refer to the geometric, persistent and ramp induced errors
respectively. Each error class is again divided into system-
atic (’mean’→ a2gM), systematic per arc/manufacturer
(’uncertainty’→ a2gU) and random errors (’random’→
a2gR). Table 1.1 lists the skew quadrupole components in
the LHC dipole magnets.

Table 1:a2 components in the LHC main dipole magnets
in units of10−4 atRref = 17 mm.

a2 component in units of10−4 atR = 0.017 m
geometric (a2g) persistent (a2p) dynamic (a2t)

M U R M U R M U R
0.0 0.5 1.7 0.0 0.0 0.77 0.0 0.75 1.7

The normalised skew quadrupole gradientks is given by

ks(dipole) =
1

Rrρ
· a2 (2)

whereRr is the reference radius for the field expansion
(Rr = 17 mm) andρ the bending radius inside the dipole
magnets (ρ = 2778 m for the main bending magnets).

The integrated skew quadrupole strength per main dipole
is given by (l = 14.3 m)

l · ks,uncertainty(MB) ≈ 2.75 · 10−5m−1 (3)

l · ks,random(MB) ≈ 7.6 · 10−5m−1. (4)

1.1 Quadrupole magnets

The skew quadrupole field of a tilted quadrupole is given
by

ks(quadrupole) = −k2 · sin (2 · �φ), (5)

Assuming an rms tilt angle of�φ = 0.3 mrad and a
normalised quadrupole gradient ofk2 = 0.0085 m−2 one
obtains (l = 3.4 meter)

l · ks,random(MQ) ≈ 1.75 · 10−5m−1 (6)

1.2 Sextupole magnets

A vertical orbit offset in the sextupole magnets leads to a
skew quadrupole component

ks(sextupole) = −ksext · �y, (7)

whereksext is the normalised sextupole strength and�y
the vertical orbit error inside the sextupole magnet. As-
suming an rms orbit error of�y = 1 mm and a normalised
sextupole gradient ofksext = 0.047m−3 one gets (l = 0.32
meter)

l · ks,random(sextupole) ≈ 1.5 · 10−5m−1. (8)

Weighted by the number of elements in the machine
(ca. 350 quadrupole and sextupole and 1100 main dipole
magnets) the contributions of the quadrupole and sextupole
magnets amounts to only 20 % of the total random coupling
coefficient.

2 COUPLING COEFFICIENTS

The coupling coefficient per dipole magnet can be written
as

�ci± =
1
2π

·
∫

MB

ds
√
βxβy · ks · ei(µx±µy) (9)

For the LHC version 6.1 we have�(µx − µy)cell = 2π ·
0.02, �(µx + µy)cell ≈ 2π · 0.5 and the contribution of an
individual LHC cell can be written

�ci− ≈ 6 · lMB

2π
· √βxβy · ks (10)

�ci+ ≈ 2
2π

· √βxβy · ks

wherelMB is the dipole length (lMB ≈ 14.3 m).
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Figure 1: Each short vertical line indicates one quadrupole. The skew quadrupole magnets are located next to Q23 and
Q27 left and right from the mid arc.

2.1 Systematic Coupling Coefficient per arc

Summing the contributions of all dipole magnets in one arc
one gets

�ck− = f− · 6
2π

· √βxβy · lMB · ks (11)

�ck+ =
2
2π

· √βxβy · ks

with

f− =
sin (Ncell · [µx − µy]cell/2)

sin ([µx − µy]cell/2)
(12)

Fig. 2 showsf− as a function of the tune split per cell.
For a tune split of 5 we havef− = 15.9. Inserting√
βx · βy = 78 m and lMB · ks,uncertainty from Equa-

tion 4 we get�ck− = 0.042. Summing the contributions
from all arcs we get for the total coupling coefficient

�ck− = 0.27. (13)

2.2 Random Coupling Coefficients

Taking the incoherent sum over all dipole magnets yields
for the total coupling coefficient

‖�c±,tot‖ =
√

2 · 1100 · 1
2π

· √βxβy · lMB · ks,r (14)

Inserting
√
βx · βy = 78 m andlMB ·ks,r from Equation 4

we get
‖�c±,tot‖ = 0.044 (15)

3 SKEW QUADRUPOLE CORRECTOR
LAYOUT

Each arc of the LHC lattice is equipped with two pairs of
skew quadrupoles. Each magnet is 0.32 meter long and has
a maximum field of 125 T/m. The two skew quadrupole
magnets of each pair are separated by a phase advance of
µy = π in order to minimise the excitation of vertical dis-
persion. The two pairs are separated by a phase advance
of µx + µy = n · π in order to minimise theβ-beat gener-
ated by the skew quadrupole magnets. The corresponding
corrector layout is illustrated in Fig. 1.

3.1 Correction of the coupling coefficient due
to systematic a2 errors

Correction of the coupling coefficient due to systematica2

errors per arc (uncertainty) requires a powering of the four

skew quadrupole magnets in series. In this case the cou-
pling coefficient of the corrector magnets can be written
as:

ccor−s =
0.32
2π

√
βxβy ·kcorr ·

∑
j

cos (µx,j − µy,j) (16)

whereµx,j andµy,j are the horizontal and vertical phases
with respect to the mid-arc. The top line in Fig. 3 shows the
phase advance depended terms in Equation 16 for different
tune splits.

3.2 Correction of the coupling coefficient due
to random a2 errors

The compensation of the coupling coefficient due to ran-
doma2 errors can be done in two ways:

• powering of two orthogonal arcs

• left-right independent powering of the two skew
quadrupole pairs in one arc

The first option depends on the phase advance between two
arcs and thus, on the phase advance of the insertions. While
this option is viable for the LHC optics version 6.1 it is
possible to imagine a scenario for which the phase advance
µx − µy differs by multiples of180◦ from arc to arc. In
this case, the arcs are not independent and can not be used
for compensating the coupling coefficient due to random
a2 errors.

4 LEFT-RIGHT POWERING OF THE
TWO SKEW QUADRUPOLE PAIRS

A robust solution for the compensation of the coupling
coefficient due to randoma2 errors is to power the skew
quadrupole corrector magnets independently on the left and
right-hand side of the arcs.
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Figure 2: f− as a function of the tune split per cell. The
points indicate the values for the LHC V6.1 with tune split
5 and 9 (resonance free lattice [1])
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Figure 3:
∑

j cos (µx,j − µy,j) and
∑

j sin (µx,j − µy,j)
as a function of the the tune split per cell. The points on
the left indicate the values for the LHC V6.1with tune split
5 and the points on the right the values for the resonance
free lattice (tune split 9)

4.1 Coupling coefficients for the corrector
magnets

The coupling coefficient of the corrector magnets with an-
tisymmetric powering can be written as:

ccor−r =
0.32
2π

√
βxβy ·kcorr ·

∑
j

sin (µx,j − µy,j) (17)

For the LHC version 6.1 every other arc has an indepen-
dent powering of the corrector magnets and the arcs with
independent powering of the two rings are interleaved such
that each arc only provides left-right powering for one of
the two rings. This implementation presents a good com-
promise between distributing the asymmetric powering of
the arcs over the machine and minimising the number of
required cables in the arc. The left-right powering spoils
the compensation of theβ-beat generated by the skew
quadrupole magnets. However, we will see later that the
left-right powering amounts only to 20 % of the nominal
corrector strength and the resultingβ-beat remains below
1 %. Fig.3 shows the phase advance depended terms in
Equation 17 for different tune splits.

5 REQUIRED CORRECTOR STRENGTH

5.1 Correction of the systematic a2 per arc

Requiring that Equation (16) compensates the expression
in Equation (11) we get

ks(corr) = − 6
0.32

· lMB · ks,sys(MB) · f−
fcorr+

(18)

with fcorr+ =
∑

j cos (µx,j − µy,j). Insertingf− from
Fig. 2 andfcorr+ from Fig. 3 we get

ks(corr, sys) = 0.0024 → BQS,sys < 60 T/m

ks(corr, sys) = 0.0007 → BQS,sys < 16 T/m

for a tune split of 5 and 9 (resonance free lattice), respec-
tively. Both values are comfortably below the maximum
gradient of the skew quadrupole magnets (125 T/m).

5.2 Correction of the random a2

Requiring that Equation (17) compensates 1/4 of the ex-
pression in Equation (14) (4 arcs with left-right powering
of the skew quadrupole magnets) we get

ks(corr) = −
√

2 · 1100
4 · 0.32 · fcorr−

· lMB · ks,sys(MB) (19)

with fcorr− =
∑

j sin (µx,j − µy,j). Inserting lMB ·
ks,sys(MB) from Equation 15 andfcorr+ from Fig. 3 we
get

ks(corr, ran) = 0.0014 → BQS,sys < 33 T/m

ks(corr, ran) = 0.0008 → BQS,sys < 18 T/m

for a tune split of 5 and 9 (resonance free lattice), respec-
tively. The total corrector strength (systematic per arc plus
random→ BQS,tot < 100 T/m) is still comfortably below
the maximum gradient (125 T/m).

6 RESULTS FOR LHC OPTICS 6.1

The following section gives some numerical results ob-
tained with MAD for a tune split of 5.

6.1 The LHC without correction

Choosing a distribution of thea2 uncertainty where the
coupling coefficient contributions of the different arcs add
up (worst case) yields the following perturbations:

• closest tune approach(a2 uncertainty):∆Q ≈ 0.2

• closest tune approach(a2 uncertainty plus random):
∆Q ≈ 0.213

• average tilt-angleof the particle distribution:ψ ≈ 41◦

(rms≈ 5◦)

• vertical dispersion: Dy,rms ≈ 0.09 m,→ Dy,peak ≈
0.4 m

• βy-beat: ∆β/β0 < 2.5 %

6.2 The LHC after correction of systematic and
random a2

Correcting the systematic and randoma2 yields:

• ∆Q< 10−5

• average tilt-angleof the particle distribution:ψ ≈
1.5◦ (rms≈ 0.5◦)

• vertical dispersion: Dy,rms ≈ 0.07 m,→ Dy,peak ≈
0.35 m

• β-beat: ∆β/β0 < 0.4 %
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