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Abstract give explicit representation for all dynamical variables in
he base of compactly supported wavelets. Our solutions
re parametrized by solutions of a number of reduced al-
ﬁebraical problems from which one is nonlinear with the
same degree of nonlinearity and the rest are the linear prob-
lems which correspond to particular method of calculation
of scalar products of functions from wavelet bases and their
1 INTRODUCTION derivatives. In part 4 we consider results of numerical cal-

) ) o culations.
In this paper we consider the applications of a new nume-

rical-analytical technique which is based on the methods
of local nonlinear harmonic analysis or wavelet analysis to 2 RMSEQUATIONS

the nonlinear root-mean-square (rms) envelope dynami%sebw we consider a number of different forms of RMS en-

_[1]' SU(?{;I apprgach mayé)le usefL(JjI n alllznodelsl_m WZ'Ch IR/elope equations, which are from the formal point of view
is possible and reasonable to reduce all complicated profy, ore than nonlinear differential equations with ratio-

lems related with statistical distributions to the problem§lal nonlinearities and variable coefficients. Lt 1, x-)
. Y

despribed by systems Qf nonlinear ordingry/partial differ e the distribution function which gives full information
ential equations. In this paper we consider an approa

out noninteracting ensemble of beam particles regard-

based on the second moments of the distribution functioqﬁg to trace space or transverse phase coordirates:)
for the calculation of evolution of rms envelope of a beam’l’hen we may extract the first nontrivial bit of ‘dynamical
The rms envelope equations are the most useful for analfﬁformation’ from the second moments

s

sis of the beam self-forces (space—charge) effects and also

We present applications of variational — wavelet approac
to nonlinear (rational) rms envelope dynamics. We hav
the solution as a multiresolution (multiscales) expansion i
the base of compactly supported wavelet basis.

allow to consider both transverse and longitudinal dynam- 5 9 9

ics of space-charge-dominated relativistic high-brightness %=1 = < %1 2= //mlf(ml’xz)dxldm
axisymmetric/asymmetric beams, which under short laser ) )

pulse—driven radio-frequency photoinjectors have fasttran- %z, = <2 >= //fo(xlva)dxlde 1)
sition from nonrelativistic to relativistic regime [2]. From

the formal point of view we may consider rms envelope Uim = <2172 >= //chzf(xl, x9)dzdas

equations after straightforward transformations to standard

Cauchy form as a system of nonlinear differential equationgps emittance elli
which are not more than rational (in dynamical variables)x%
Because of rational type of nonlinearities we need to conge 4150 based on the second moments.

sider some extension of our results from [3]-[10], which \ye il consider the following particular cases of rms

are based on application of wavelet analysis technique @nvelope equations, which described evolution of the mo-

variational formulation of initial nonlinear problems. ments (1) ([1],[2] for full designation): for asymmetric
Wavelet analysis is a relatively novel set of mathematyoams we have the system of two envelope equations of

pse is given by? ., . =< 2§ ><
> — < mmy >2. Expressions for twiss parameters

ical methpds, which .gives us a possibility to work Withihe second order far,, ando,,:

well-localized bases in functional spaces and give for the

general type of operators (differential, integral, pseudod- . . ~ 2

ifferential) in such bases the maximum sparse forms. Our Oy, + 0y — +Q2, (—) Oz = (2)
approach in this paper is based on the generalization [11] of v 5 i ) 5 o
variational-wavelet approach from [3]-[10], which allows I/(Io(0z) + 025)7") + €0y [T, Vs

us to consider not only polynomial but rational type of non- . ;A ~! 2

. - s QQ s _
linearities. Oy T 0ay 5 +3, <'y) Ty

In part 2 we describe the different forms of rms equa-
tions. In part 3 we present explicit analytical construc-

tion for solutions of rms equations from part 2, which ar . . . .
o . e . he envelope equation for an axisymmetric beam is a par-
based on our variational formulation of initial dynamical,. . :
ticular case of preceding equations.

roblems and on multiresolution representation [11]. We . .
P P [11] Also we have related Lawson’s equation for evolution

*e-mail: zeitlin@math.ipme.ru of the rms envelope in the paraxial limit, which governs
T hitp:/Avww.ipme.ru/zeitlin.html; http://www.ipme.nw.ru/zeitlin.html  evolution of cylindrical symmetric envelope under external

I/(IO(Uml + 0—302)’73) + 6721,x2/0—372’72
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linear focusing channel of strenghts. : which corresponds to the full multiresolution expansion in
. A ke 22 all time scales. Formula (5) gives us expansion into a slow

o +o (T) +Kyo=—=—=+ s (3) partz3l°v and fast oscillating parts for arbitrary N. So, we
el oy o* 6%y may move from coarse scales of resolution to the finest one

whereK, = —F,/rf3?ymc?, B=wvy/c=/1—72 for obtaining more detailed information about our dynami-
After transformations to Cauchy form we can see thagal process. The first term in the RHS of representation (5)
all this equations from the formal point of view are notcorresponds on the global level of function space decom-
more than ordinary differential equations with rational non{osition to resolution space and the second one to detail

linearities and variable coefficients (also,we may considegpace. In this way we give contribution to our full solu-
regimes in whichy, 7' are not fixed functions/constants buttion from each scale of resolution or each time scale. The
satisfy some additional differential constraint/equation, bugame is correct for the contribution to power spectral den-

this case does not change our general approach). sity (energy spectrum): we can take into account contribu-
tions from each level/scale of resolution.
3 RATIONAL DYNAMICS So, we have the solution of the initial nonlinear (rational)

problem in the form
The first main part of our consideration is some variational
approach to this problem, which reduces initial problem to N X
the problem of solution of functional equations at the first zi(t) = 2:(0) + > A Zi(1), (6)
stage and some algebraical problems at the second stage. k=1

We have the solution in a compactly supported wavelet b"i'l\'/here coefficients\* are roots of the corresponding re-

si_s. An example of_such type of bgsis_is demonstrated Blced algebraical (polynomial) problem [11]. Conse-
Fig. 1. Multiresolution representation is the second ma”@]uently, we have a parametrization of solution of initial

problem by solution of reduced algebraical problem.
So, the obtained solutions are given in the form (6),
whereZ(t) are basis functions and, are roots of reduced
ﬂ/\ﬁ system of equations. In our cagk,(¢) are obtained via
multiresolution expansions and represented by compactly
ﬂf\[\ supported wavelets ank}, are the roots of reduced poly-

ﬂﬂ/“ nomial system with coefficients, which are given by CC or
SSS constructions.

%ﬁvw— EachZ;(t) is arepresentative of corresponding multires-

olution subspac#’;, which is a member of the sequence of

increasing closed subspadés

VocCcVoicVoCcViCcVyC... (7)

Figure 1: Wavelets at different scales and locations. o )
The basis in each; is

part of our construction. The solution is parameterized by _ _

solutions of two reduced algebraical problems, one is non- pii(x) =22 1) (8)
linear and the second are some linear problems, which areh indiced. i tt lati q i i
obtained from one of the standard wavelet construction%.\./ ereindices, j representtransiations and scaling respec

the method of Connection Coefficients (CC) or Stationarjvely or actlen O(]; u?lderlymtg afflnetgrotup which ag? asa
Subdivision Schemes (SSS). microscope” and allow us to construct corresponding so-

So, our variational-multiresolution approach [11] give:sIutlon with needed level of resolution. .
us possibility to construct explicit numerical-analytical so- It S.hOUId be not_ed that SUCh. representations .(5)’(6) for
lution for the following systems of nonlinear differential §o|gtlons of equat!ons (2).(3) give the best p055|blg chal—
equations |zat|_on p_ropertles in corresponding pha_lse spa_ce.Thls is es-
pecially important because our dynamical variables corre-

2= R(z,t) or Q(z,t)2= P(z,1), (4) sponds to moments of ensemble of beam particles.

wherez(t) = (z1(¢), ..., z,(t)) is the vector of dynamical
variablesz; (t), 4 NUMERICAL CALCULATIONS
R(z,t) is not more than rational function of z,
P(z,t),Q(z,t) are not more than polynomial functions
of z and P,Q,R have arbitrary dependence of time.
The solution has the following form

In this part we consider numerical illustrations of previous
analytical approach. Our numerical calculations are based
on compactly supported Daubechies wavelets and related
wavelet families. On Fig. 2 we present according to formu-
2(t) = 2389V (t) + Z zi(wjt), wj~27  (5) lae (5),(6) contributions to approximation of our dynamical
J>N evolution (top row on the Fig. 3) starting from the coarse
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Figure 2: Contributions to approximation: from scaleto
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Figure 4: Power spectral density: from scaleto 2°.
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Figure 3: Approximations: from scafe to 2°.

approximation, corresponding to scale (bottom row) to

the finest one corresponding to the scales fibinto 2°

or from slow to fast components (5 frequencies) as details
for approximation. Then on Fig. 3, from bottom to top, [8] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, Variational Ap-
we demonstrate the summation of contributions from cor-
responding levels of resolution given on Fig. 2 and as result
we restore via 5 scales (frequencies) approximation our dy-
namical process(top row on Fig. 3).

We also produce the same decomposition/approximatio9] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, Symmetry,
on the level of power spectral density (Fig. 4). It should
be noted that complexity of such algorithms are minimal
regarding other possible. Of course, we may use differ-

ent multiresolution analysis schemes, which are based ¢10]

different families of generating wavelets and apply such
schemes of numerical-analytical calculations to any dy-

namical process which may be described by systems of

ordinary/partial differential equations with rational nonlin-
earities [11].
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