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1  INTRODUCTION 
 

In [1] the excitation of electromagnetic soliton has 
been investigated at wakefield generation, which can not be 
described as envelope. The soliton is formed after electro-
magnetic pulse. The solitons are nonlinear wideband elec-
tromagnetic pulses. Many papers have been published on 
solitary perturbations and their applications (see, for exam-
ple, [2, 3]).  

At large intensity of laser radiation the qualitative 
changing of interaction of this radiation with plasma is real-
ised. Namely, the possibility of solitary perturbation forma-
tion appears. Really, experiments have shown that if the 
dispersion relation of excited oscillations is linear, then the 
solitary perturbation formations are possible.  

There were many attempts to construct analytical so-
lution in type of electromagnetic solitary perturbation. In 
this paper similar solitary perturbation is investigated ana-
lytically.  

 

2  PROPERTIES OF A SOLITARY 
PERTURBATION, PROPAGATING WITH 

LIGHT VELOCITY 
 
In magnetized plasma one mode, propagating under 

angle θ  to the magnetic field H o → ∞ has following dis-

persion relation  
 

( )ω ω θ ω= +ck c kp pcos
/

2 2 2
1 2
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Here  ωp  is the electron plasma frequency;  ω, k  are fre-

quency and wavevector; �  is the light velocity. One can see 
that for ωp <<c k  the dispersion relation is close to linear 

one  ω θ≈ c k cos  . Hence, one can assume that a solitary 

perturbation can be formed on this mode. Let us derive a 
nonlinear equation, describing this solitary perturbation.  

Let us consider plane metallic waveguide filled by 
plasma. The waveguide is of dimension  a  along axis  y; the 

perturbation propagates with velocity  
�
Vs  in  ( )x z,  under 

angle  θ   to axis  z. We consider the solitary perturbation 

of electric potential  ϕ   of small amplitude,  − ϕ
R

 . From 

Maxwell equations one can derive the equation for 

electric field  
�
E   
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Here  n v,

�
 are density and velocity of plasma elec-

trons. For latter determining we use the kinetic equation 
for electron distribution function fe  
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As we consider strong magnetic field �

Ho → ∞ , directed along z axis, then the plasma elec-

trons propagate along this axis. Because we derive so-
lution in kind of stationary soliton, propagating with 

velocity  
�
Vs , we use dependence of fe on coordinate 

and time 
� �
r V ts−  . In this case equation (3) has fol-

lowing form  
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where E zz = −∂ϕ ∂/ . From Vlasov equation for 

electrons (4) one can obtain expressions for electron 
density perturbation δn n n o= −  and their  z  com-

ponent of current  
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Using (5), from (2) we derive nonlinear equation for 
small amplitudes  
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"‘" is the space derivative along direction of perturbation 

propagation, � ⊥  is the transversal wavevector. Integrating 

(6), one can obtain equation for  φ ϕ θ= e m Ve scos2 2    
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Using ′ =
=−

φ
φ φ

R

�  , one can derive the expression for 

velocity of solitary perturbation in type of electric potential 
well  
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One can see that the solitary perturbation is formed on two 
modes with dispersion relations ω ω≈ ⊥p k k  and 

ω θ≈ ck cos  . The velocity of the solitary perturbation 

grows with amplitude.  

Approximately from  ∆ ξ φ φ φ φ= ′ =−R
R
�

  one 

can find the expression for width of the solitary perturbation  
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and at  sin θ ω<< <<⊥ck p 1  

( )∆ ξ ϕ ω≈ 2 22 1 2
c m ee o p

/
. One can see that the 

width of the the solitary perturbation  ∆ ξ   decreases with 

its amplitude  ϕ
R

 , and there are three parameters for con-

trol of the solitary perturbation properties: k p⊥ ,ω , θ . 

Using (8), one can solve the equation (7) in type  
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R R
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where ξ  is the coordinate along the direction of per-

turbation propagation 

( ) ( )η ω ω θ= + +⊥ ⊥ ⊥k c k c kp p
2 2 2 2 2 2 2 2sin . . 

 

3  EXCITATION OF A SOLITARY 
PERTURBATION BY AN ELECTRON 

BEAM 
 

Up to this time we have considered the station-
ary soliton. Taking into account the electron beam and 
time derivative in Vlasov equation should lead to 
growth with time of soliton amplitude. Hence from 
Vlasov equation for distribution function of electrons fe 
one can obtain  
 

( )∂ θ ∂t e
o

s z ef V V f+ − ≈( cos ) ( )1 0  (11) 

 
which is obtained by assuming smallness and a slow 

time and space variation of  φ . Here fe
o( )  is the qua-

sistationary distribution function of electrons, fe
( )1  is 

the perturbation of electron distribution function, de-
termined by nonstationary of potential  φ(t). Integrating 
(11) over velocity one can get the next order correction 
to the space derivative of the electron density. This 
expression must be equal to nb’, the space derivative of 
the electron beam density perturbation, which follows 
from the space derivation of Poisson’s equation. The 
latter quantity is found from the hydrodynamic electron 
equations in linear approximation which read at 
V Vb s≈ cosθ  

∂ ∂ ϕt b bo zn n e m2 2= − ( / )  (12) 

 
From (11) , (12) and Poisson equation follows 
 

∂ ϕ ϕt bo o sn n3 32= − ′′′( / )V   (13) 

 
From (6), (7), (13) one can derive  
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A solution of (14) is obtained by an appropriate exten-
sion  
 

φ φ µ ξ τδ φ τ= −
−∞
∫o s

t

ot d V( ) [ ( ( ))],  (15) 
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where from (10)  µ ξ ξ φ( ) / ( / ( ))=1 22ch o∆ξ . In 

(15) a change  δVs   of the soliton velocity  Vs  due to the 

interaction with the electron beam is taken into account. 
From (14), (15) one can derive for δVs and growth rate  
γ ∂ φ ∂= ln o t  of amplitude  φo  following expressions 
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Note the appearance of  (nbo/no)

1/3  in both expressions as in 
the linear electron-beam-plasma instability.  
 

4  CONCLUSION 
 

Thus a beam-plasma-type interaction between the 
electron beam and electron solitary perturbation leads to its 
growth in metallic magnetized plasma-filled waveguide in 
coincidence with a similar result obtained in [4-24] for soli-
tary perturbations in drifting plasmas and in beam-plasma 
systems. 

From (8), (9) and (16) the properties of solitary per-
turbation are followed at θ = 0  
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γ ω ϕ≈ p bo o o e sn n e m V( / ) ( , / )/ /1 3 2 1 21 5  

Also the properties of solitary perturbation are inter-
esting for k ⊥ = 0  

V cs ≈ , ( )∆ ξ ϕ ω= 2 2
1 2 2m e ce o p

/
,   

( )γ ω ϕ≈ p bo o o ec n n e m( / ) ( , / )/ /1 3 1 21 5  (18) 
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