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Abstract

The dynamics of high intensity electron beam in a
traveling wave structure is studied. The equations of
particles motion in self-consistent RF field are devised.
The possible trajectories in phase space for the particles
with some initial conditions are analyzed. The
recommendations for choice of RF structure parameters to
optimize the efficiency of the electron acceleration are
done.

1 INTRODUCTION

In the design of high-current linear electron
accelerators it is important to maximize the efficiency and
minimize the energy spread of the accelerated beam. A
correct study of the dynamics of an intense low energy
beam in a waveguide requires to consider both the change
of the particle velocity and the change of the amplitude
and the phase velocity of the wave which interacts with
the beam in the accelerating structure. This nonlinear task
must be solved in a self-consistent  manner.

2 SELF-CONSISTENT EQUATIONS OF
MOTION

Let’s consider that the injected beam is bunched at a
field frequency ωb. The beam current J(z,t) can be
expanded into a Fourier series:
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where J0 is an effective constant current and Iν is a
relative value for ν-th current harmonic. The interaction
of the beam with only the forward wave is suggested. In
the filling time tf=L/cβg a steady-state field distribution is
established over the entire section length L , such that its
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~ 2mc/E

~
e λ= +  is a

function only of the longitudinal coordinate ξ = z /λ and
the particle energy γ(ξ,ϕ0) is function ξ and initial phase
ϕ0. In a self-consistent field the rate of energy gain for
particles can be written as:
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The fields produced by the beam consist of the RF field
and the Coulomb field. In the Eqs. (1)
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0 bJ/J2 απλ=  is dimensionless coefficient

determined the longitudinal Coulomb field, b is a radius

beam, emc4J 3
0.

⋅ε⋅π= , Γν is a coefficient of

shielding. The nonlinear phase can be found from the
equation
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We also assume that parameters of the accelerating
structure are such that the waveguide impedance
Rn(ξ)=E2λ2/2P , the wave phase velocity in the absence of
the beam βph(ξ) and the damping coefficient w(ξ)=αλ  are
slowly varying functions of the longitudinal coordinate ξ.
In this case the equation for the RF field amplitude is:
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where ξ−= 2ddln /Rww n1 . The last equation can

be derived by using the Vainshtein method [1],
generalized to the case of a changeable impedance of the
structure [2]. The dimensionless parameter
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±=ξ  determines the coupling of the

beam with the wave in the accelerator: the upper sign
corresponds to a structure with a positive dispersion
(βg>0), while the lower one corresponds to negative
dispersion (βg<0). The system of equation (1)-(3)
describes the changes of the particle energy, the complex

amplitude A
~

 and phase ϕ of the self-consistent field in
the accelerating structure.

3 INTEGRALS OF MOTION AND LAWS
OF CONSERVATION

Let us write the equation for the beam energy gain
averaged over all injection phase ϕ0 of the particles:
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��ϕ0) is initial function of the particles distribution. The
Coulomb part of field is equal to zero past averaging.
Eliminating the complex value of the first current
harmonic for Eqs. (3) and (4) we can find an equation
relating the modulus of complex amplitude for RF field,

( $
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$ = ), and the beam energy γc in the waveguide:
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This equation expresses conservation of energy. With
pronounced current loading, in which case the damping at
the wall can be neglected for a constant impedance
structure, we find:

1
2

c HAB4 =+γ (6)

The total power flux of RF field and beam is equal to
constant H1 for every cross-section of the waveguide.

Let us multiply  left and right parts of equation (1) by
dϕ/dξ and average the result over all injection phase ϕ0 of
the particles:
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In the simplest case, βph=cte, w1=0 , from above equation
(7) one gets:
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constant. It is the second law of conservation.
At last, let us multiply the equation (1) by (dϕ/dξ-1)

and average the result over all injection phase ϕ0. If initial
beam modulation is absent we can find third law of
conservation:

( ) ( ) 3H=ξγ⋅−ϕϕ 1/dd 0 (9)

The two integrals (6) and (7) relate the beam energy, the
amplitude of the self-consistent field, A(ξ), and the
harmonics of the beam current. The third integral can be
used to determine the phase and energy spread of the
beam.

4 EQUATIONS FOR TRAIN OF BUNCHES

The nonlinear beam dynamics in self-consistent field
was solved for the case of constant impedance structure in
Ref.[3] and for variable impedance structure in Ref. [4].
The basic assumption used in [3], [4] is that the beam can
be treated as a train of well-grouped bunches. For large
entrance amplitude of RF field A(0) this assumption is
good because the beam is bunched in the initial part of the
waveguide. The equations system (1)-(3) is become
simpler for the train of bunches. Let us introduce the
difference of phases ψ=αA–αI  where αA is a phase of

complex amplitude AiAA
~

.e= and αI is a phase of
complex amplitude for the first current harmonic

Ii
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~ .e= . Using the new phase ψ the equations (4),

(2) and (3) become:
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For the well-grouped bunches, when the bunches have a
small phase size, I1≈2 and (10) coincide with the self-
consistent equations system for point bunches in [4]. For
the case when the Coulomb term of the field and the
damping RF field at the wall can be neglected the integral
of motion (8) can be written as:

( ) 2c H)(Af =ψ⋅ξ−γ sin (11)

This expression and the energy conservation law (6) are
relating the bunch energy γc , its phase ψ and RF field
amplitude A for every cross-sections of the waveguide. In
the cylindrical system of the coordinates where A is
radius, ψ is azimuth angle and γ is longitudinal coordinate
the expressions (6) and (11) can be represent by the 3D
second-order surfaces (fig.1.). The line of intersection for
these surfaces is the solution of the equations system (10).

Figure 1.

5 PARTICLES PHASE TRAJECTORIES

When the amplitude A and the phase ψ of the self-
consistent field are expressed in terms of the H1 and H2

values, the result is an equation whose solution yields the
behavior of the bunch energy γc as a function of the
longitudinal coordinate ξ :
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The expression (12) is similar a nonlinear system
Hamiltonian that consists of the «kinetic energy» and the
«potential energy» U. The equation (12) shows that the
shape of the «potential well» is governed by the H2 and B.
The value of H1 determines the possible range of the
bunch energy gain. The general behavior of the function
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U (γ) for a waveguide structure with a positive dispersion
when βph< 1 is shown on fig.2. For the structure with βph<
1 the function U(γc) can have either a single minimum or
two minimums and a single maximum. If βph≥ 1, the
«potential well» has a single minimum only.

Figure 2.
The model of ideally grouped bunches gives a good

description of the actual interaction of a modulated beam
with an accelerating structure, provided that the phase
stability of the bunches is not disrupted. In analyzing the
beam dynamics it is important to know the behavior of the
bunch phase in the course of the interaction of the bunch
with RF field. It is convenient to use the energy-phase (γc,
ψ) plane. At low energies, the particles have longitudinal
stability if the bunch phase ψ lies in the interval (0,π). As
γc increases , the phase can go outside this interval for a
certain time, but the trajectories on the (γc, ψ) plane
should remain closed (the bunches are captured by the
wave) if an acceptable energy spead of the beam is to be
achieved.

Figure 3
The behavior of γc as function of ψ can be found by

means of the analysis for «potential well» U and the
intersection line of H1 and H2 surfaces. The projection of
this lines for different H1 on the phase space (γc,ψ) is
shown in fig.3. for the waveguide when βph<1 .For this
case there are always closed trajectories near two
minimums of the function U(γc). From the large number of
trajectories there is a single closed phase trajectory for
which the efficiency, η=4B(γmax-γ0)/A0

2 , has maximum.
The analysis of the phase portrait is shown that the «slip»
of the bunch with respect to the wave makes it possible to
achieve the amplitude A=0 for this trajectory. The phase

ψ is equal to zero in this point. The last condition can be
found from expression

( ) ( )ξγ−γ=ψ /ddtg /H)(f 2c , when A→0. If A and

ψ are to approach zero, the following two conditions must
hold:

γmax=H1/4B , (13)

f(γmax)=H2 (14)
If γmax is substituted into (14), we can find the value of the
phase velocity at which the efficiency is maximized.
However, the accelerating section cannot be optimized in
terms of the efficiency for all values of βph found in this
manner. The reason is that for small values of γc when
βph<1 the equation U(γc)=H1 can have two additional
roots γ1 and γ2 which lie between γ0 and γmax . In this case
the maximum beam energy is γ1 , rather than γmax (fig.2).
For a given H1 and a given H2 there exists a limiting value
βph,c above which these intermediate roots do not exist.
The nature of phase trajectories is very sensitive to the
initial injection conditions, i.e., to the choice of H1 and
H2, when a value of βph is near  βph,c. In order to find the
optimum efficiency conditions for the accelerating
waveguide section using (14) we must always analyze the
«potential well» U(γc).

6 CONCLUSION

In the paper the self-consistent equation of the
particles motion in the traveling wave structure has been
solved. It is shown that the conservation laws relate the
beam current and energy with RF field amplitude and
phase. The phase space trajectories for the particles with
some initial constants H1 and H2 was been analyzed. The
recommendations for choice of the phase velocity βph and
the coupling parameter B to optimize the efficiency of the
electron acceleration was been given.
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