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Abstract

The Green’s function method (GFM) is used to describe
the effects of a statistical roughness on the propagation of
electromagnetic fields in a circular waveguide. The GFM
method, applied to a scalar Helmholtz equation with per-
turbed boundary conditions, allows us to treat multiple
scattering of the field. Theoretical results for azimuthal and
longitudinal roughness are reported, and the phase velocity
of the field is discussed in both cases.

1 INTRODUCTION

In the design of future Free Electron Lasers and Linacs
very short bunches of high intensity, small emittance and
small energy spread are planned to be used. In order to
keep limited the degradation of beam features, evaluation
of induced wakefields acquires considerable importance:
in Ref. [1] it has been remarked, as regards accelerators
working with short bunches, that the roughness of beam
pipe surface might excite parasitic fields increasing emit-
tance and energy spread.

Several simplified models have been developed to eval-
uate these effects, assuming irregularities either as small
bumps with simple shape and random distribution on a
smooth surface [1] or as a periodic corrugation of beam
tube [2]; a further model [1] describes the roughness, into
a local cartesian reference frame, as a random function
y = h(x, z) of surface coordinatesx andz and longitudinal
impedance is calculated depending on statistical properties
of the processh, assuming small local derivatives (small-
angle approximation,|∇h| � 1).

In this paper we investigate the effects of surface rough-
ness on an electromagnetic wave travelling in a circular
waveguide whose boundary is given by the 2-D equation
a + ρ̃(ϕ, z). It should be noted that an electromagnetic
wave incident on a rough surface is subjected to diffrac-
tion phenomena which can be divided into two groups ac-
cording to the number of total reflections: the first group
comprises processes like incidence on sea surface or ir-
regular ground, where the wave undergoes a single act of
scattering and only slight distorsions of the field are pro-
duced [3]; the second group is made by the phenomena
that take place in domains bounded by two or more scatter-
ing surfaces, like in rough resonant cavities or waveguides,
where a field undergoes multiple scattering along propaga-
tion path and a simple pertubation theory is not very fruit-
ful to describe it correctly. The GFM allows us to treat
distributed summation of waves propagating in a waveg-

uide with randomly rough shape, approximating an homo-
geneous boundary condition on the perturbed surface by
an inhomogeneous condition calculated on the average, i.e.
ideal, surface. Being̃ρ(ϕ, z) a random function of trans-
verse coordinates, we calculate, depending on its statistical
features (variance and correlation function), the phase ve-
locity shift for the electromagnetic field: within the range
of validity of our approximations, no synchronous fields,
propagating along the waveguide withvph = c, emerge for
a finite value of the frequencyf = ω/2π.

2 THE GREEN’S FUNCTION METHOD

2.1 General Description

Let us consider the functionG(r, r′) solution of three di-
mensional Helmholtz equation

∇2G(r, r′) + k2G(r, r′) = δ(r − r′) (1)

with the mixed boundary condition (BC)

∂G(r, r′)
∂np

+ ηoG(r, r′)
∣∣∣
r∈Sp

= 0 (2)

whereηo is an integro-differential operator andnp is a unit
vector normal to the surfaceSp, described by the radius
vector

r = rs + n(rs) ζ(rs ) (3)

wherers lies on the ideal surfaceS that undergoes shape
deviations given by the random functionζ(r s ). In the fol-
lowing we will consider as known the functionGo(r, r′),
that is the solution of Helmholtz problem when no pertur-
bation is present.
Assuming that

∣∣∇tζ(rs )
∣∣ � 1, with ∇t =∇−n(∇·n), and

substituting (3) into (2), the BC can be transferred on the
ideal surfaceS by means of an expansion in the perturba-
tion parameterζ, retaining only first order terms

∂G

∂n
+ηoG−∇tζ ·∇tG+ζ

∂2G

∂n2
+ ηoζ

∂G

∂n

∣∣∣∣
r∈S

= 0 (4)

This equation is known as approximated oreffective
boundary condition (EBC) that can be shortly written as
[∂G/∂n+ηoG+V̂ G]

S
=0, that is an unperturbed condition

corrected by a perturbation term proportional to the random
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parameterζ. Using Green’s theorem

G(r, r′)=Go(r, r′) +
∫
S

[
∂Go

∂n
G+Go

∂G

∂n

]
dSs =

= Go(r, r′) +
∫

S

Go(r, rs)V̂ (rs)G(rs, r′)dSs (5)

we obtain an integral equation forG(r, r ′), depending on
the random parameter̂V (ζ). It can be shown that even the
average Green’s functionG(r, r′) =< G(r, r′) > is solu-
tion of an integral equation

G = Go+
∫∫
S

Go(r,rs1 )M(rs1,rs2 )G(rs2,r
′)dS

s1
dS

s2
(6)

wherersi ∈ S, that is called Dyson equation; themass
operator functionM, introducing dependence on random
functionζ, can be expressed as an infinite series, perform-
ing a multiple iteration of eq. (6)1. If one letr approachS,
because of the properties of unperturbed Green’s function,
G(r, r′) verifies anon-local BC given by

(
∂

∂n
+ηo

)
G(r, r′)

∣∣∣∣
S

=
∫
S

M(rs, rs1)G(rs1 , r
′)dSs1 (7)

3 CIRCULAR WAVEGUIDE WITH
RANDOM ROUGHNESS

In a cylindrical system of coordinates{ρ, ϕ, z} a set of so-
lutions corresponding to TM(z) e.m. waves can always be
derived from the non-null longitudinal component of elec-
tric fieldEz, considered as potential function, that is solu-
tion of

∇2Ez + k2Ez = 0 (8)

with the further conditionn× E|S = 0 when a bound-
ing metallic surfaceS is present. If this surface can be
described asa + ρ̃(ϕ, z), then its unit vector isnp

∼=
[1,− ∂ρ̃

∂ϕ ,−∂ρ̃
∂z ] and the vanishing condition forE becomes

∂ρ̃

∂z
Eρ+Ez =0 (9)

Performing separated analysis for azimuthal and longitu-
dinal corrugations, we have made differences stand out as
regards eigenvalue spectrum, pointing out typical features
of both cases.

3.1 Azimuthal Roughness

If the boundary surface of the waveguide is given bya +
ρ̃(ϕ), simple geometrical considerations allow us to treat a

1Actually the GFM was originally introduced to describewaveprop-
agation into 3-D random media, employing Feynman diagram technique:
the treatment shown in this paper derives from an extension to the case of
boundary perturbations [4].

bidimensional Helmholtz equation in the transverse plane,
assuming for all solutions an exponential dependence2 on
z like e−kzz. Sinceρ̃ varies only with azimuthal coordi-
nate, equation (9) entailsEz = 0 on Sp . The technique
presented in previous section has been applied to a Green’s
problem equivalent to equations (8)-(9).
The EBC for azimuthal perturbations appears as

G(ρ, ϕ, ρ′, ϕ′) +
∂G(ρ, ϕ, ρ′, ϕ′)

∂ρ
ρ̃(ϕ)

∣∣∣∣
ρ=a

= 0 (10)

and the Green’s theorem for bidimensional domains leads
to the integral Dyson equation

G(rt, r′t)=Go(rt, r′t)+
∫∫
S

∂Go(rt, rts)
∂ns

M(rts , rt′s) ×

× ∂G(rts , r
′
t)

∂n′s
drtsdr

′
ts

rts = (a, ϕ) (11)

In this situation the non-local boundary condition is

G∣∣
ρ=a

=
∫

S

M(ϕ,ϕ′′)
∂G(ρ′′, ϕ′′, ρ′, ϕ′)

∂ρ′′

∣∣∣∣
ρ′′=a

a dϕ′′ (12)

because of the properties of unperturbed Green’s function
for Dirichlet conditions.
If one assumes̃ρ as a statistically uniform process, it is un-
effected by waveguide rotations and the Green’s function
can be still considered as depending only on(ϕ− ϕ ′). De-
veloping both members of (12) in Fourier series, a mixed
boundary condition atρ=a emerges for harmonic compo-
nentsGn(ρ, ρ′) of average Green function

Gn(a, ρ′) = 2πaMn
∂Gn(ρ, ρ′)
∂ρ

∣∣∣∣
ρ=a

(13)

Being Gn solutions of a Bessel differential equation3

verifying condition (13), one obtains an expression for
Gn(ρ, ρ′) [5] and finally a perturbed dispersion equation of
the form

Jn(kρ a) − 2 π a kρMn(kz)J ′n(kρ a) = 0 (14)

An approximated evaluation of transverse eigenvalue
shift is possible, assuming|δkρ| much smaller than
the distance between two adjacent roots and thus solv-
ing (14) as a perturbation ofJn(kρa) = 0, finally obtaining

δkρ ∼= 2π kρMn(kz) (15)

The random process̃ρ appears into Fourier components
Mn of the functionM(ϕ,ϕ′); if σ is the variance of̃ρ and
W (ϕ−ϕ′)=σ−2<ρ̃(ϕ) ρ̃(ϕ′)> is its correlation coeffi-
cient, then, neglecting higher order terms proportional to

2Let us remind that this is actually equivalent to perform a Fourier
transform.

3In fact the operations of differentiation and averaging, because of
their linearity, are interchangeable.
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(σ/a)4 in the infinite series defining mass operator (Buor-
ret approximation [4], see Sect. 2) it follows:

M(ϕ,ϕ′)≈σ2W (ϕ− ϕ′) ∂
2Go(ρ, ϕ, ρ′, ϕ′)
∂ρ∂ρ′

∣∣∣∣
ρ=ρ′=a

+ ... (16)

and then, from eq. (15)

δkρn,m=2πkρn,m

σ2

πa4

+∞∑
p=0

+∞∑
q=1

εp
2
ξ2p,q

Wn−p +Wn+p

k2zp,q
− k2zn,m

(17)

whereεp is the Neumann symbol,ξp,q is the q-th zero of
Bessel functionJp(x), kzp,q =[k2−(ξp,q/a)

2]1/2, andWi

represents the i-th Fourier harmonic of the correlation co-
efficientW (ϕ,ϕ′). In eq. (17) the term with index{n,m}
shows a null denominator as consequence of previous ap-
proximations. The resonance can be avoided performing a
more accurate evaluation that finally leads, retaining only
dominant term, to

δkzn,m =
(
dkz
dkρ

)
δkρn,m =

(σ
a

) k2ρn,m

kzn,m

√
Wo (18)

as regards propagation constantkz = [k2 − k2
ρ
]1/2.

In Fig.1 (a) the normalized shift for TM0,1 is plotted versus
normalized frequency, for different values ofkl, wherel is
the correlation length, assuming forρ̃ a gaussian statistics.

The decreasing of phase velocity determined by eq. (18)
appears to be very small and, within the range of validity
of our approximations, no synchronuos field seems to be
excited.

3.2 Longitudinal Roughness

If the boundary surface of the waveguide is now given by
a+ρ̃(z), it is no longer possible to separate longitudinal
propagation from transverse resonance: anyway one can
still consider a bidimensional problem, now in the(ρ, z)
plane, with the conditionEz = 0 on the rough boundary,
provided that the first term of eq. (9) might be neglectable
in case of small perturbations with small gradient. Calcu-
lations absolutely similar to those of previous section again
lead to the perturbed dispersion equation (14). The differ-
ence is in the form of mass operator transform, appearing
now as a continuous convolution

Mn(kz)=
σ2

4π2

1
πa4

+∞∑
q=1

ξ2n,q

∫ +∞

−∞

W̃ (kz − k′z)
k2zn,q

− k′z2 dk
′
z (19)

whereW̃ (kz) is the Fourier transform of the correlation
coefficientW (z − z ′). In order to determine eigenvalue
shift, it is necessary to utilize the radiation principle [4] in
the solution of the intergral present in eq. (19). It appears
that nowδkzn,m holds real and imaginary part

�[δkzn,m ]=
k2ρn,m

kzn,m

σ2

2πa4

+∞∑
q=Q(n)+1

ξ2n,q

W̃(kzn,m+αzn,q)
αzn,q

(20a)

�[δkzn,m ]=−k
2
ρn,m

kzn,m

σ2

2πa4

Q(n)∑
q=1

ξ2n,q

F (W̃ )
βzn,q

(20b)

whereQ verifiesξn,1<ak<ξn+1,1 andξn,Q<ak<ξn,Q+1 ,
andF (W̃ )=[W̃ (kzn,m−kzn,q)+W̃ (kzn,m+kzn,q)].
The incoherent scattering into other modes that can prop-
agate above cut-off along the waveguide (both in forward
and in backward direction; seeF [W̃ ] ) causes an attenu-
ation given by eq. (20 b), while the excited modes below
cut-off decrease the phase velocity according to eq. (20 a).
In Fig.1 (b) the normalized attenuation for TM0,1 is plotted
versus normalized frequency, showing resonance peaks by
different cut-offs: in fact an eigenwave propagating along
the waveguide with a steep angle of incidence, being fre-
quently reflected, is more influenced by roughness and thus
the effect of perturbation is amplified.

1 2 3 4 5 6 7 8 9 10

10-7

10-9

ak/ξ0,1

δkz0,1
kz0,1 kl=0.01

kl=0.001

ak
ξ0,1

�[δkz0,1
]

kz0,1
× 108

kl=10
kl=1
kl=0.1
kl=0.01

(a) (b)

Figure 1: Normalized shift vs. normalized frequencies: az-
imuthal (a), and longitudinal (b) roughness.

4 CONCLUSIONS

The GFM allows us to consider multiple scattering of e.m.
waves into a randomly rough waveguide, determining, as
regards TMn,m modes of the structure, the actual shift for
propagation constantδkz for azimuthal and longitudinal
corrugations. In both cases a decreasing in phase veloc-
ity emerges, depending on statistical features of random
perturbation, which, within the range of validity of our
approximations, does not appear sufficient to excite slow
waves. For longitudinal roughness, an attenuation term has
been found taking into account incoherent scattering power
losses.
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