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Abstract uide with randomly rough shape, approximating an homo-
geneous boundary condition on the perturbed surface by

The Green’s function method (GFM) is used to describg " o .
- . an inhomogeneous condition calculated on the average, i.e.
the effects of a statistical roughness on the propagation ¢ S .
T . . : eal, surface. Being(y,z) a random function of trans-
electromagnetic fields in a circular waveguide. The GF . . . "
. : : verse coordinates, we calculate, depending on its statistical
method, applied to a scalar Helmholtz equation with per: . . .
e . features (variance and correlation function), the phase ve-
turbed boundary conditions, allows us to treat muItlpIq

scattering of the field. Theoretical results for azimuthal anaoCIty .Sr."ft for the eIectrqmagneue field: within the range
?f validity of our approximations, no synchronous fields,

longitudinal roughness are reported, and the phase veIocip¥O agating along the waveguide with, — ¢, emerge for
of the field is discussed in both cases. pagating 9 9 h =5 9
a finite value of the frequencly = w/2x.

1 INTRODUCTION
2 THE GREEN'SFUNCTION METHOD
In the design of future Free Electron Lasers and Linacs

very short bunches of high intensity, small emittance an@ 1 General Description

small energy spread are planned to be used. In order to

keep limited the degradation of beam features, evaluatidsEt us consider the functio@(r, r’) solution of three di-
of induced wakefields acquires considerable importanc&ensional Helmholtz equation

in Ref. [1] it has been remarked, as regards accelerators

working with short bunches, that the roughness of beam V2G(r,v') + k> G(r,x') = 6(r —1') 1)
pipe surface might excite parasitic fields increasing emit-
tance and energy spread. with the mixed boundary condition (BC)

Several simplified models have been developed to eval-
uate these effects, assuming irregularities either as small IG(r,1") + 1, G(r, 1) —0 )
bumps with simple shape and random distribution on a ony, ’ ’ res,

smooth surface [1] or as a periodic corrugation of beam

tube [2]; a further model [1] describes the roughness, int¥/herer, is an integro-differential operator amd, is a unit
a local cartesian reference frame, as a random functiof@ctor normal to the surface,, described by the radius
y = h(z, z) of surface coordinatesandz and longitudinal ~vector

impedance is calculated depending on statistical properties

of the proces#, assuming small local derivatives (small- r =r, + n(ry)((ry) 3)
angle approximationVh| < 1).

In this paper we investigate the effects of surface roughwherer; lies on the ideal surfacé that undergoes shape
ness on an electromagnetic wave travelling in a circuladeviations given by the random functigqr ;). In the fol-
waveguide whose boundary is given by the 2-D equatiotpwing we will consider as known the functiai, (r,r’),

a + p(p, z). It should be noted that an electromagnetighat is the solution of Helmholtz problem when no pertur-
wave incident on a rough surface is subjected to diffraddation is present.

tion phenomena which can be divided into two groups acAssuming tha{V,((r,)| < 1, with Vi =V—n(V-n), and
cording to the number of total reflections: the first grougsubstituting (3) into (2), the BC can be transferred on the
comprises processes like incidence on sea surface or i@eal surfaceS by means of an expansion in the perturba-
regular ground, where the wave undergoes a single act 8en parametec, retaining only first order terms

scattering and only slight distorsions of the field are pro- s s .

duced [3]; the second group is made by the phenomena .

that take place in domains bounded by two or more scatter- dn | ° GV Vil (g et =0 @)
ing surfaces, like in rough resonant cavities or waveguides,

where a field undergoes multiple scattering along propagdhis equation is known as approximated effective
tion path and a simple pertubation theory is not very fruitboundary condition (EBC) that can be shortly written as
ful to describe it correctly. The GFM allows us to treat[dG/dn+1,G+V G],=0, that is an unperturbed condition
distributed summation of waves propagating in a wavegeorrected by a perturbation term proportional to the random

res
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parametet. Using Green’s theorem bidimensional Helmholtz equation in the transverse plane,
assuming for all solutions an exponential dependénoe
0G, oG 2 like e=7%=%_ Sincep varies only with azimuthal coordi-

A / _

G(r,1') =G, (r,r') +/ [ on °on ] dS, = nate, equation (9) entails, = 0 on S, . The technique
s presented in previous section has been applied to a Green'’s
— G, (r, 7 /Go 1)V (rs) Glrs,r')dS, (5 problem equivalent to equations (8)-(9).
(r,x) + (r,x5)V(xs) Glrs, 1)dSs - (9) The EBC for azimuthal perturbations appears as

we obtain an integral equation fé¥(r,r’), depending on

the random paramet@f(¢). It can be shown that even the

average Green'’s functiofi(r,r’) =< G(r,r’) > is solu-

tion of an integral equation and the Green's theorem for bidimensional domains leads
to the integral Dyson equation

92t €) 5l 0 (0

/ /
Gp, o, p',¢") + o

p=a

g:Go—f—/ Go(r,rsl)/\/1(1‘51,1‘52)g(I‘SQ,r')dSS1dSS2 (6) OC (rs,10.)

g G(ry,r))=Go(ry, 1) // on. M(ry,,ry) X
wherer;, € S, that is called Dyson equation; thmass ag(rt r})

operator function M, introducing dependence on random Tdrtsdris re, = (a,p) (11)

function¢, can be expressed as an infinite series, perform-
ing a multiple iteration of eq. (63. If one letr approachs,  In this situation the non-local boundary condition is
because of the properties of unperturbed Green'’s function,

ady” (12)

p''=a

G(r, 1) verifies anon-local BC given by g‘p:a:/M(% o) 39(/"@52’; p,e")
0
<% +7)o> G(r,x' :/M(rs,rm)g(rsnr')dsa (7)  because of the properties of unperturbed Green’s function
for Dirichlet conditions.
If one assumeg as a statistically uniform process, it is un-
3 CIRCULAR WAVEGUIDE WITH effected by waveguide rotations and the Green’s function
RANDOM ROUGHNESS can be still considered as depending onlyen- ¢’). De-
veloping both members of (12) in Fourier series, a mixed

In a cylindrical system of coordinatép, ¢, 2} & set of SO- )4 ndary condition gb=a emerges for harmonic compo-
lutions corresponding to TM) e.m. waves can always be nentsG,, (p, o) of average Green function

derived from the non-null longitudinal component of elec-

tric field E,, considered as potential function, that is solu- 0Gn(p, P

; - P Gnla,p') = 2ma M, M (13)

tion of o =
V’E. + k*E, =0 (8) Being G, solutions of a Bessel differential equation

verifying condition (13), one obtains an expression for

with the further conditiom x E|g = 0 when a bound- 5 /) 5] and finally a perturbed dispersion equation of
ing metallic surfaceS is present. If this surface can be the form

described as: + p(p, z), then its unit vector isn, =
[1,—$2, —%2] and the vanishing condition fdE becomes Ju(kya) — 2mak, M, (k) J! (k,a) =0 (14)
p An approximated evaluation of transverse eigenvalue
5, Lot E==0 (9)  shift is possible, assumingsk,| much smaller than
the distance between two adjacent roots and thus solv-

Performlng Separated anaIySIS for azimuthal and |Ong|tqng (14) as a perturbaﬂon df (k a) =0, f|na||y Obta|n|ng
dinal corrugations, we have made differences stand out as

regards eigenvalue spectrum, pointing out typical features
of both cases. Ok, = 2wk, M, (k) (15)

1 Azdmuthal Rouahn The random pr.ocesﬁ appears into Fourigr components
3 uthal Rougnness M, of the functionM (¢, ¢’); if o is the variance of and
If the boundary surface of the waveguide is givenddy W (p— ') =02 < j(¢) p(¢’) > is its correlation coeffi-
p(), simple geometrical considerations allow us to treat gient, then, neglecting higher order terms proportional to

1Actually the GFM was originally introduced to descritvave prop- 2L et us remind that this is actually equivalent to perform a Fourier
agation into 3-D random media, employing Feynman diagram techniqugansform.
the treatment shown in this paper derives from an extension to the case offIn fact the operations of differentiation and averaging, because of
boundary perturbations [4]. their linearity, are interchangeable.
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(o/a)* in the infinite series defining mass operator (Buorwhere@ verifies¢, , <ak<¢, ., and¢, , <ak<¢

n,1 n,Q+1
ret approximation [4], see Sect. 2) it follows: and F(W):[W(kzn ke )+ Wik, + k.,
92Go(p, ¢, 0y ¢! The incoherent scattering into other modes that can prop-
M(p, @ )= W (o —¢) (6p6p’ ) +-. (16)  agate above cut-off along the waveguide (both in forward
p=p/=a and in backward direction; se€[1V] ) causes an attenu-
and then, from eqg. (15) ation given by eq. (20 b), while the excited modes below

5 400 +00 W W cut-off decrease the phase velocity according to eq. (20 a).

Sk,, . =2rk, ”_Z D ee2 Wnop® Wntp (17 InFig.1 (b) the normalized attenuation for T\is plotted

n,m n.mﬂ.a4 2 p,q k2 _ k2 . : '

p=0g=1 Zp.g VZn,m versus normalized frequency, showing resonance peaks by

wheree, is the Neumann symbog,, , is the g-th zero of different cut-offs: in fact an eigenwave propagating along

Bessel function/ (), k _[kz_’&q Ja)2]1/2, andW; the waveguide with a steep angle of incidence, being fre-
P ' WZp,q T P.q ’ ?

represents the i-th Fourier harmonic of the correlation coduently reflected, is more influenced by roughness and thus
efficientW (¢, ). In eq. (17) the term with indefx, m} the effect of perturbation is amplified.
shows a null denominator as consequence of previous ap-g—————— ]
proximations. The resonance can be avoided performing a 204 &L} 10° k=10
more accurate evaluation that finally leads, retaining onlyl \ kl=0.01 3% ploo
dominant term, to L \\ 1%

dk oy k2 AN 1

Sk = <—> b = (2) VW, 8 7T

: dk, | pn. al k., i \Q\

as regards propagation constapt= [k? — kf]l/ 2, L ak/ e
In Fig.1 (a) the normalized shift for Tl is plotted versus = 5« & 7 o
normalized frequency, for different values/df wherel is @ ()

the correlation length, assuming foa gaussian statistics. rigyre 1: Normalized shift vs. normalized frequencies: az-

The decreasing of phase velocity determined by eq. (18},ythal (a), and longitudinal (b) roughness.
appears to be very small and, within the range of validity

of our approximations, no synchronuos field seems to be
excited. 4 CONCLUSIONS

3.2 Longitudinal Roughness The GFM allows us to consider multiple scattering of e.m.

f the bound ; fth ide i . bwaves into a randomly rough waveguide, determining, as
It ~e oundary surface o t € Waveguide IS now given egards TM _ modes of the structure, the actual shift for
a+p(z), it is no longer possible to separate longitudina

) ropagation constantt, for azimuthal and longitudinal
pr_opagat!on from t_ransvgrse resonance. anyway one ¢ Brrugations. In both cases a decreasing in phase veloc-
still cons_lder a b|d|mgn5|ona| problem, now in the z) ity emerges, depending on statistical features of random
plane, with the conditio’. = 0 on the rough boundary, e rhation, which, within the range of validity of our
provided that the first term of eq. (9) might be neglectable,, o imations, does not appear sufficient to excite slow
In case of small pe'rtu.rbanons with smaII. gradlent'. Calcu,\'/vaves. For longitudinal roughness, an attenuation term has
lations absolutely similar to those of previous section agaig,an, found taking into account incoherent scattering power
lead to the perturbed dispersion equation (14). The diﬁerlbsses
ence is in the form of mass operator transform, appearing

now as a continuous convolution 5 REFERENCES
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