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Abstract

Advances in orbit control and concepts of a new algorithm
are described that allow the simultaneous minimisation of
the global orbit and correction kicks in a systematic way
especially for a non-optimised machine. Although the
algorithm is not SVD dependent, using it with SVD
renders flexibility and transparency ensuring thereafter
optimised solutions that are intrinsic to SVD. The
algorithm is implemented in an orbit correction program
that is further used in studying the feasibility and best
strategy for a closed orbit fast feedback system.

1  ORBIT STABILITY
Low emittance machines ( such as 3rd  generation light

sources) have a large amplification factor for closed orbit
distortions against quadrupole misalignment, while the
presence of strong sextupoles generate a large limitation
on the motion stability and high sensitivity to optical
distortions. Other than the usual stability issues related to
ground motion, girder response to vibrations and the
spectral components of the mains that are common to all
machines, the mismatch between injection energy (1 GeV)
and actual operation energy ( 2 GeV / 2.4 GeV at 22% of
the time) gives additional orbit distortion problems at
ELETTRA. These problems are connected with magnetic
hysterisis and the radiation induced thermal load on the
vacuum vessel. While the first one slightly compromises
the reproducibility of the global orbit the later induces
orbit shifts of up to 100 µ horizontally and 30 µ
vertically peak to peak as measured in the middle of the
straight sections, reaching a maximum 5 hours after
ramping 320 mA to 2 GeV. For these reasons efficient
orbit control and correction schemes are of paramount
importance.

Global and local orbit correction programs have to take
care of the final orbit that has to be kept globally below
500 µm rms and locally below 2 ( µm and µrad) in the
middle of the straight sections. For the orbit acquisition a
beam position monitor (bpm) system consisting of 96
(four button) multiplexed detectors, attached to the
quadrupoles with a bandwidth for the closed orbit of 1
kHz, a  resolution of 2 µ and an absolute accuracy of <
150 µm rms is used. For the corrections, a Beam Steering
system is employed consisting of 82 combined H+V
correctors 0.22 m long with a 140-130 Gaus m
maximum field strength.

2  ORBIT CORRECTION ALGORITHMS

2.1  Introduction

The orbit is corrected globally once or a few times per
run whereas locally it is corrected via a simple local slow
feedback every 5 minutes. From 1994 to 1997 global
orbit corrections were performed by means of the program
Orbit[1] equipped with the COCU package developed at
CERN [2] that comprises well known correction schemes
like MICADO, SIMPLEX, BUMPS and was associated
with a unique data structure management system (MOPS).
The program performed well but it could not be easily
handled by non-experts and quite often correction schemes
had to be interchanged in order to achieve a better
correction. A global orbit and dispersion correction
scheme was added afterwards (1995) using the SVD
(Singular Value Decomposition) method completely de-
coupled from COCU and MOPS. “Orbit” was finally
(1997) withdrawn to be replaced by “TOCA” [3] a very
user friendly SVD based program conceptually written for
non experts. The program globally corrects the orbit
and/or dispersion as well as tune and chromaticity.

All these methods however are orbit minimisation
oriented and do not consider minimising the corrector
strengths. It is true that SVD keeps the strength’s change
at minimum but does not minimise the total strengths.
Minimal corrector strength is desirable for many reasons
such as better orbit reproducibility, reduction of local
distortions and/or dispersion, lesser stress for the
correctors and their power supplies and strength margin in
case of need. Thus one should aim to the best orbit
correction with the minimal   absolute  corrector strengths

2.2  Eigenvalues and the Reduction Algorithm

It is well known that the orbit change due to a change in
the corrector strengths can be expressed as:
where θ is the kick vector i.e. the m corrector settings, Y

is the orbit change vector as seen by the n bpm readings
and A is the response matrix (theoretical or measured).
This matrix A is rectangular, over/under constrained and
sometimes numerically unstable. To solve Eq. 1 one
multiplies with the transpose of A and solves instead  the
equation:

The matrix ATA is symmetric, non negative and the
solution of eq. 2 is the least square approximation of eq.1.
To better understand the physical meaning of the solutions
one diagonalises the ATA matrix finding thus the eigen
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values λj and the unitary and orthogonal eigen vectors ϑ j
of eq. 2. Each of the m eigenvectors represents a set of
corrector values and by substitution in eq. 2 one obtains a
corresponding set of orbit changes yj. Since the
eigenvectors are unitary it is easy to prove that:

Thus, corrector eigen vectors that correspond to small
eigen values do not appreciably change the orbit [4]. This
is also very useful when treating singularities of the
matrix A as we shall see later. On the other hand eigen
vectors corresponding to large eigenvalues do change
appreciably the orbit; but what can be said about the
eigenvectors themselves?

To answer this question one has to see how vectors are
decomposed to eigenvectors. Let Θ  be a correctors’ actual
vector associated to its corresponding Y orbit vector via
the operation AΘ=Y. .  This correctors’ vector can be
decomposed in terms of its orthogonal and unitary eigen
vectors according to:

Similar decomposition can be performed for the orbit Y.
In terms of the orbit orthogonal but not unitary
eigenvectors:

Taking the norm of the orbit vector it can be shown that:

From eq. 1,2,3,4 one can be easily arrive at the relation:

which connects the orbit and corrector eigen coefficients.
Since the norm of the corrector vector ||θ|| is the sum of
the squares of its eigen coefficients, by virtue of the right
part of equation 6 the following relation can be written:

Eq. 8 toghether with eq. 3 indicates that if we choose
eigen vectors corresponding to large eigen values we have
the maximum orbit change with the minimum  strength
rms of the correctors. Thus in general a corrector
minimisation algorithm could be as such: Decompose the
corrector’s vector in its eigen vectors and choose a sum of
them corresponding to the higher eigenvalues until the
orbit is either as before or even minimised. Note that the
actual orbit data are not essential to this algorithm.

2.3  The Reduction Algorithm and SVD

The SVD is a well known, old and robust method for
dealing with singular (or quasi so) matrices. SVD is based
on a linear algebra theorem whereby any A nxm matrix
(with n ≥ m ) can be decomposed as a product of a

 
column

orthogonal (U) a diagonal (W) and an orthogonal (V)
matrix:

The degree of singularity is given by the W matrix, which
being diagonal its inverse is the reciprocal of its diagonal
matrix elements and to render the solution regular one has
to replace the 1/wj by “zero” if wj is “zero”.

In order to understand the physical meaning of the
three matrices U, W and V one has to consider again the
eigenvalue problem. From eq. 2 and the SVD
decomposition it can be readily shown that the elements
of the W matrix are equal to the square root of the
eigenvalues λi.  Furthermore since: multiplying from the
right hand side by V we see that the columns [V] of the V
matrix satisfy the eigen value equation: AAT [V] = λ i [V].
It can be further proven that the columns of the
orthogonal matrix V are the same with the corrector
eigenvectors ϑ j obtained in the previous section, while
the columns of the column-orthogonal matrix U are the
eigen orbits. Furthermore due to the strong correlation of
eigen-strenghts and eigen-orbits, in the inverse matrix of
A the elements in the diagonal or about it have large
values (since there, each eigen corrector is multiplied and
summed by its eigen orbit (VUT)).

Thus SVD provides all the ingredients needed to solve
the problem. But it does even more since it can discard
small eigen values in a very elegant way. It is easy to
show that exclusion of an eigen value is equivalent to
singling out the corresponding (corrector) eigen vector
from the solution set i.e. subtracting the particular eigen
vector from the original (corrector) vector as expressed in
eq. 4. However in this case the diagonally biased form of
A-1 might be lost since certain eigen-strengths do not
combine with the corresponding eigen orbits. Discarding
those eigen values still the solution θ minimises in the
least square sense the expression  r = Aθ -Y where r ≠0.
Furthermore it can be proven that the solution vector θ
has the smallest possible length [5]. This solution is
added to the already existing corrector strengths and
although it is minimal the original strengths might not
be. To achieve a total minimisation the actual corrector
setting, the vector Θ0 is decomposed by using the basis
column vectors of matrix V (which span the corrector
strength space). The re-composition of the vector is made
by a step-wise approach where eigen vectors corresponding
to the larger eigen-values W2 (i.e large orbit changes with
small corrector strength change as seen from eqs. 3, 8) are
chosen until the predicted orbit rms has its initial value. It
can be shown that setting to zero all eigenvalue
coefficients cj for m1≤ j ≤m any arbitrary vector can be
decomposed as follows:

 and the rms orbit change squared equals to the sum of the
squares of the eigenvector coefficients:
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The number of non zero  eigen-values m-m1 is therefore
the free parameter to be adjusted, usually the first 10-20
larger ones. The recomposed vector has remarkably low
strengths i.e. ≤ 0.2 mrad and thus reducing the rms
original correctors strengths by more than 70% and up to
90% maximum. Note that to this point the bpm readings
are not essential. Adding to those reduced original
corrector strengths the SVD solution θ of corrector
strength changes needed to further correct the orbit (here
the bpm readings are essential) the final strengths are kept
always at minimum. Alternatively (and this is the adopted
method here) one first finds the solution as Θ0+θ and
then decompose it to the V eigen vectors, both ways give
similar results. In the next table orbit and the correctors
strenghts reduction results using the Reduction algorithm
alone as well as in combination with the SVD orbit
correction scheme is shown for ELETTRA:

Table 1: reduction algorithm and SVD correction results
method Corrector settings  (Amps) Orbit  (mm)

mean rms ptp rms ptp

initial config. 0.065 1.422 9.926 0.376 2.42

Reduction  Alg. 0.078 0.158 0.631 0.315 2.28

Reduction, relaxed

Correction
0.074 0.193 1.078 0.258 1.74

Reduction, stronger

Correction
0.081 0.466 2.5 0.177 1.0

Full  Correction 0.059 1.211 8.0 0.123 0.9

A program called “Gloc” has been developed [6] that
comprises all the above features. Programmed on a
modular structure that helps in developing and testing new
ideas, the program includes many features such as:
measure and analyses of the response matrix, orbit
corrections under various constraints such as: de-select
certain correctors or bpms, zeroes, scales or reduces the
setting of certain correctors while conserving the orbit. It
also includes many other options such as local global
correction that is discussed briefly below.

2.4  Global and/or local corrections

Local corrections minimise the orbit variations at each
experiment individually involving only the correctors
needed for the bump. The main disadvantage is the bump
leakage that can lead to a cross talk between experiments
or even to a deterioration of the global orbit. However in
many cases it can be very useful if particular experiments
require certain conditions of local orbit as in the case of
ELETTRA where a slow local feedback is operating to
both give at experiments the wished conditions (position
and angle of the beam) as well as to keep the global orbit
from diverging due to thermal motion of the chamber.

Alternatively correcting globally minimises the orbit at
all experiments. Fast global feedbacks can be made [7] if
one divides the bpm system in subsystems per sector and
take advantage of the strong correlated form of A-1 around
the diagonal as discussed previously, meaning that to set
the steerers only local orbit information is required.
However as we have seen this is true if not many
cancellations of the eigen vectors are required since then
the matrix loses its diagonally biased form. In this case it
could be much simpler to ignore the corresponding
corrector, which however would decrease the correction
efficiency. At ELETTRA currently a 7 corrector local
bump correction scheme is investigated whereby at each
section the beam can be set at specific position and/or
angle to 3 specific points connected to experiments (i.e
long straight, bend and short straight). The bump has been
incorporated into Gloc [6] (using SVD for the inversion)
and tested with beam in the horizontal plane with good
results correcting simultaneously all sections. This will
be combined with a global slow feedback system based on
the described algorithm.
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