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Abstract

In this paper we discuss an analytical procedure to sum
up all the members of a given resonance family express-
ing the joint influence in a single driving term. We discuss
the compensation of linear coupling, pointing out the rela-
tion between the matrix-based and the resonance approach.
The Henon map and a non linear lattice which reproduce
the Antiproton Decelerator (AD) are used to test the effi-
ciency of different schemes.

1 INTRODUCTION

Transverse, single particle dynamics in a synchrotron has
been widely studied using an Hamiltonian perturabative ap-
proach [1]. The present work takes one step forward by
summing all the members of a given resonance family and
expressing the joint influence in a single driving term [2].
As an application we consider the problem of compensa-
tion of linear coupling making the bridge between the ma-
trix and the Hamiltonian approach. The efficiency of dif-
ferent compensation schemes is discussed with regards to
the Hénon map [2] and the AD [3].

2 THE SUMMING PROCEDURE

The summed-resonance driving term Cn1;n2;1 of a given
resonance of order N = n1 + n2 is:

Cn1;n2;1 =

+1X
p=�1

Cn1;n2;p (1)

where:

Cn1;n2;p =

Z 2�

0

A(�)e�i(n1Qx + n2Qy � p)�d � (2)

is the single-resonance driving term with:

A(�) =
R2

�(2R)N=2
jn1j!jn2j!

�x(�)
jn1j=2�y(�)

jn2j=2

� ei[n1�x(�) + n2�y(�)] �K(�) (3)

The angle � = s=R is the coordinate along the ring of
average radius R and Qx;y, �x;y, �x;y are respectively the
two components of the tunes, the phase advances and the
beta functions.
Suppose �K(�) is different from zero and constant in j short
intervals [�i; �i + ��i] in which A(�) ' A(�i) (thin lens
approximation):

Cn1;n2;1 =

jX
i=1

(�Cn1;n2;1)i (4)

=

+1X
p=�1

Z �i+��i

�i

A(�)e�i[�� p]�d�

where � � n1Qx + n2Qy.
The summation can be redefined making use of the shift

p = [�] + k where k is an integer and [ � ] states for the
standard integer value. Assuming (� � [�])��i � 1, we
get [2]:

Cn1;n2;1 = �

�(� � [�])

sin [�(� � [�])]
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The standard-(single-)resonance driving term is [7]:

Cn1;n2;p =
R2

�(2R)N=2
jn1j!jn2j!

(6)
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The figure 1 shows the ratio between jj(�Cn1;n2;1)ijj

and jj(�Cn1;n2;p)ijj versus the distance from the resonance
([�] = 1) [2].
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Figure 1: Ratio r(�) between k�Cn1;n2;1k and
k�Cn1;n2;1k versus �.

As the working point approaches the closest resonance
the two estimations converge to the same value for the mod-
ulus.
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3 LINEAR BETATRON COUPLING

Analyses of betatron coupling can be broadly divided into
two categories: the matrix approach [4], [5], [6] that de-
couples the single-turn matrix to reveal the normal modes
and the Hamiltonian approach [7], [8] that evaluates the
coupling in terms of the action of resonances using a per-
turbation method.

3.1 The coupled Hénon map

We performed a numerical analysis on the Hénon map, a
hyper-simplified lattice model whose phase-space trajecto-
ries show some of the expected characteristic of a realistic
lattice map (non linearities, regions of regular and stochas-
tic motion etc.). In this application the linear coupling is
generated and corrected by 1 + 4 thin skew quadrupoles 1.
The compensation for both sum and difference resonance is
achieved by solving the 4-equations system in the four un-
knowns ki the coefficients of which are given by the driving
terms [2].

Table 1 shows a comparison between the strengths of the
4 correctors (k2�5) when compensating the single-turn ma-
trix using the MAD program [9]), the two infinite families
of sum and difference resonances (for the same � = 0)
and the closest sum and difference resonances to the work-
ing point. The last two compensations have been obtained
making use of the AGILE program [10].

Table 1: Compensator strengths (k2�5) in presence of the
coupling source k1.

k (m�2) Matrix Summed Single

k1 (source) 0.5 0.5 0.5
k2 -0.051 -0.050 0.559
k3 0.034 0.033 0.554
k4 -0.319 -0.313 0.476
k5 -0.275 -0.275 0.117

Moreover we studied the dynamics aperture defined as
follows:

D =

"Z �

2

0

[r(�;N)]4 sin(2�)d�

# 1

4

: (7)

where N is the number of turns and r(�;N) is the last
stable initial condition along � before the first loss (at a turn
number lower than N ) occurs.

The results for the three studied optics for short and
medium term tracking, are quoted in Table 2.

1Lattices with only solenoids or with both type of coupling elements
give the same kind of results

Table 2: Dynamic aperture values. The errors are estimated
to be 2% for N=5000 and 4% for N=20000.

D (m) Uncoupled Summed Single

N=5000 0.0406 0.0412 0.0372
N=20000 0.0405 0.041 0.037

3.2 The Antiproton Decelerator (AD)

The comparison between the summed and single resonance
compensation has also been performed for the case of a real
machine [3], the Antiproton Decelerator (AD) at CERN
[11]. The AD has been designed to decelerate an antipro-
ton beam from 3.5 GeV/c (the momentum at which the an-
tiprotons are produced) down to 100 MeV/c (the momen-
tum favored for the foreseen experiments). The compen-
sation of the blow-up of the phase-space volume occupied
by the beam during the deceleration is assured by cooling
at several energies levels both the transverse and longitudi-
nal emittances. In particular, at low energies use is made
of an electron cooling system which exploits the action
of a solenoid field generating linear coupling between the
transverse degrees of freedom of the single particle motion.
The coupling effect is not desirable mainly for two reasons.
First, the AD working point is quite close to the main diag-
onal of the frequency diagram. The effect of the difference
resonance driving term 2 on the beam dimensions (which
should remain below a given threshold in order to optimize
the electron cooling performance) can not be neglected.
Second, in presence of coupling the tunes can approach
each other up to a minimum distance (which corresponds
to C� in the single-resonance theory). Such a stopband
seriously limits the space for monoeuvring around the AD
working point unless a coupling compensation is applied.
Four correctors (two skew quadrupoles and two solenoids)
have been foreseen to compensate the AD linear coupling.
After a careful choice of their position around the machine
lattice, the two compensation strategies have been tested in
order to maximize the area of the stability diagrams (see
below). As in the case of the Hénon map the results are
quite different: the matrix (summed resonance) compensa-
tion allows a better restoring of the unperturbed situation
leading to an improvement of the dynamic aperture with
respect to the single resonance compensation of about 10
%. We present the result of numerical investigation on the
stability. The figures 2,3,4 have been obtained by a track-
ing procedure iterating the symplectic map representing the
lattice over N turns , for each initial condition in the phys-
ical plane. If the orbit is still stable after the last turn, the
stable initial condition is plotted in the stability (x; y) dia-
gram. An analogous analysis has been also performed for

2Because of the proximity of the working point to the main diagonal
of the frequency diagram, the summed and single resonance theories gives
close values of C�. See figure 1.
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the Hénon map case [2].

4

Figure 2: Stability domain of the uncoupled case for N =

5000.

4

Figure 3: Stability domain of the summed-resonance com-
pensation forN = 5000.

The comparison points out that the summed resonance
compensation allows a more efficient restoration of the un-
coupled optics.

4 CONCLUSION

A general method which sums up all the resonances within
a given family is discussed. This techniques has been tested
studying the problem of linear coupling compensation. We
both considered the Hénon map and a lattice which repro-
duce the main features of AD at CERN. The results in-
dicate that the summed-resonance compensation (numer-
ically shown to be equivalent to the matrix one) is the more
beneficial for stability and dynamical aperture.

4

Figure 4: Stability domain after the single-resonance com-
pensation forN = 5000.
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