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Abstract

The Frequency Map Analysis (FMA) [1] is a refined nu-
merical method based on Fourier techniques which pro-
vides a global view of the dynamics of multi-dimensional
systems and which was successfully applied to accelerator
dynamics starting with the Dumas and Laskar work [2].

Two third generation synchrotron light sources, the
SOLEIL Project and the ESRF are studied with this
method. A full computation of the dynamic aperture (DA)
is performed with a discussion of its inner complex struc-
ture (resonances) in correlation with its associated fre-
quency map (FM) through diffusion (long term stability
criterion). We also underline that despite the large DAs of
both machines, the FM shapes are fully distinct due to the
high sensitivity of the dynamics to the sextupole strengths.

1 INTRODUCTION

The lattices of SOLEIL [3] and the ESRF [4] are built
up of strong focusing quadrupoles generating large chro-
matic aberrations. Sextupole magnets enable to compen-
sate the chromaticity but induce geometric and nonlinear
chromatic aberrations exciting resonances that may lead
to unstable motions. To improve the performance of such
light sources, accelerator dynamicists try to reduce the res-
onance influence but unfortunately the prediction of reso-
nance strengths is a difficult task.

Here after a brief description of both light sources, fre-
quency maps and dynamic apertures are computed. The
principal resonances are revealed, a one-to-one correspon-
dence between the configuration space and the frequency
space is performed. We show that the shape of a FM is
highly sensitive to sextupole strengths and very different
from one machine to another. Moreover time variations of
the betatron tunes give some additional information for the
global dynamics of the beam.

2 METHOD

2.1 Frequency map analysis

The study of the global dynamics of a beam is realized
with the numerical frequency map analysis [1][5]. The
transverse dynamics is modeled by a 2+1 degrees of free-
dom system, the tunes are normalized by the revolution fre-
quency. Resonances appear for integer linear combinations
of the fundamental tunes: p�x + q�y + kM = 0 where �x
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and �y are the transverse tunes and M is the inner period-
icity of the ring 1. jpj+ jqj is called the resonance order.

FMA constructs the so-called frequency map F
T :

(x; y) ! (�x; �y) from the space of initial conditions to
the tune space over a finite time span T by searching for a
quasiperiodic approximation of the transverse motion. The
main properties of the numerical frequency map F

T are:

� independent of the initial momenta (x0

0
; y

0

0
)

� fast convergence in 1

T 4 (with a Hanning window)

� invariant by time translation for a regular solution
(KAM solution): otherwise the time variation of the
tunes called orbit diffusion gives a stability criterion
of the trajectory

� On a set of KAM trajectories,FT is a regular function.
The study of the regularity of this map gives informa-
tion about resonances and nonlinear behaviors.

2.2 Map construction

Throughout this work only the transverse dynamics is taken
into account which is justified by the very low longitudinal
frequency (�soleil

s
= 0:006 whereas �soleil

x
= 18:28).

To study such a system we use a surface of section i.e.
at a given longitudinal position (typically s = 0) we look
at the return map. The coordinates used are the canonical
transverse positions (x; y) and momenta (x0

; y
0). Given a

set of initial conditions (x0; y0; x0

0
= y

0

0
= 0) the particle

trajectory is numerically computed over 2000 turns 2. For
a surviving particle, we plot it in the configuration space
defining the dynamic aperture and we compute its trans-
verse tunes with the FMA over the first 1000 turns and then
again over the last 1000 turns. The logarithmic tune differ-
ence gives a diffusion index [2] coded by a color from dark
for very stable orbits to light color for very unstable ones.
Due to the fast convergence of the method, the diffusion is
a good long-term stability criterion.

3 THE SOLEIL PROJECT

3.1 Lattice

The SOLEIL cell is based on a modified Chasman-Green
structure [6]. Table 1 sums up the main characteristics of
the storage ring and the lattice functions are given by Fig. 1.
The SOLEIL lattice is supposed perfect, with a full 4-fold
periodicity and zero chromaticities. Moreover the particles
are on momentum for this work.

14-fold periodicity for SOLEIL and 16-fold for the ESRF
2the damping time is circa 4000 turns for SOLEIL
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Table 1: SOLEIL main parameters
Energy (GeV) 2:5

Energy spread �E 9:24 10�4

Circumference (m) 337

Emittance �x(nm.rad) 3

Working point �x,�y 18:28, 8:38
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Figure 1: Optical functions for a SOLEIL superperiod.

3.2 Dynamics

Following the preceding construction scheme, the DA and
the FM for the standard SOLEIL optics are computed using
DESPOT [7] as tracking code.

As the first nonlinear contribution of the amplitude to
the frequency tune shift is quadratic, a square root step is
chosen for the initial conditions. Moreover we have a more
precise determination of the dynamics around the borders
of the DA i.e. in the vicinity of the resonances limiting
the stability area of the transverse motion. In this way an
exhaustive computation of the dynamic aperture and of its
inner structure are obtained.

We notice a large dynamic aperture (Fig. 2-b): xmax =

40mm; ymax = 24mm but these dimensions have to be
slightly reduced to 35mm in x (9th-order resonance island)
and 20mm in y.

On the FM (Fig. 2-a), 3 kinds of areas can be identified:

� regular areas where tune space points are regularly
spaced with very low diffusion (dark color). The mo-
tion is quasiperiodic.

� straight lines with rational slope which are resonance
lines. In their neighborhood there is either a lack of
points if the resonance is crossed through a hyperbolic
point or an accumulation of points for the elliptic case.

� irregular areas where all structure is lost with high
diffusion (light color): particles will be either lost or
their motion may lead to chaotic behaviors.

The FM is rather clean except at high amplitudes where
the dynamics is dominated by several resonances: the 7th-
order coupled resonance 5�x + 2�y � 4 � 27 = 0 (x �
25mm) and the resonance node between a 7th-order 3�x +

4�y � 4 � 22 = 0 and the a 9th-order 9�x � 41 � 4 = 0

which seem the most dangerous for the dynamics.
In addition we may notice that the frequency map is

folded a bit just around the working point and at high
amplitude which may induce other complicated dynamical
features.

By using orbit diffusion, a one-to-one correspondence
between a point of the dynamic aperture and a point of the
tune space is obtained.

Figure 2: SOLEIL frequency map (a) and dynamic aperture
(b) at s = 0, �x = 10m and �y = 8m.

4 THE ESRF

4.1 Lattice

Table 2: ESRF main parameters
Energy (GeV) 6

Energy spread �E 1 10�4

Emittance �x (nm.rad) 4

Chromaticities �k = (
d�k=�k
dp=p0

)k=x;y 0:1, 0:4
Working point �x,�y 36:44, 14:39

The ESRF lattice has a 16-fold periodicity [9]. The
storage ring lattice is a Chasman-Green structure with dis-
tributed dispersion, alternating low and high beta straight
sections. The operation of the machine requires a signif-
icant over-compensation of the chromaticity, as indicated
in Table 2 for multibunch mode. The lattice functions are
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given by Fig. 3. The tracking was performed with the MAD
program [8] for on momentum particles.
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Figure 3: ESRF optical functions

4.2 Dynamics

The ESRF FM (Fig. 4-a) is more complicated than the
SOLEIL one. The associated DA (Fig. 4-b) is very large
but once again these dimensions are overestimated: the DA
is full of resonance islands. Actually the map can be di-
vided into two parts:

A first part around the working point extending up to
�20mm in x and 7mm in y with low diffusion, nearly free
of resonances except the 5th-order resonance (3�x�2�y�

5 � 16 = 0) reached at x � �20mm inducing a large
resonance island in the DA.

On the second part, the FM changes of signature. In ad-
dition some regular areas last but many resonances appear:
the integer resonance �x � 36 = 0 is reached at x = �27

mm, in fact all particles between �40mm and �30mm in
x are captured in the resonance island. Beyond, resonances
from low order (4,5) to high order (8,..,21) are encountered
and the global stability is spoiled with great amplitude tune
shifts (��x � 0:5, ��y � 0:15) and high diffusion.

Even if for a perfect lattice some orbits are stable beyond
the integer resonance, dipolar defaults will excite it and the
dynamic aperture would be reduced by a factor 2.

5 CONCLUSION

We want to emphasize that too often DA dimensions pre-
sented are too large because tune shifts are usually com-
puted without coupling (e.g. �x = f(x)jy=0 ) whereas when
y dependence is taken into account, sextupole coupling de-
stroys the dynamics mainly at high amplitude (excitation of
coupling resonances).

Frequency map analysis gives a footprint of the beam.
The global dynamics is revealed in a way often neglected
by standard lattice optimization code. Besides very slight
modification in the sextupolar strengths induces large mod-
ifications of the shape of the frequency map and the global
stability. For similar dynamic apertures, the frequency
maps are very different.

Figure 4: ESRF frequency map (a) and dynamic aperture
(b) at s = 0, �x = 36m, �y = 2:5m

To end these results are too much optimistic since we
only studied perfect lattices. With measured defaults sta-
bility area is reduced often by a factor 2 (see for instance
the ALS case [10], and the first experimental FM [11]).
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[6] ”Rapport d’Avant Projet Détaillé”, CEA-CNRS, May 1999.
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