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Abstract

The self-consistent beam-beam problem is formulated for
the transverse distribution functions that may deviate from
the Gaussian. The distribution function is constructed in
terms of standard Gaussian distribution as a series of its
derivatives. It gives the possibility to take into consider-
ation the force from non-Gaussian opposite bunch and to
estimate the threshold of the flip-flop effect.

1 INTRODUCTION

Various beam-beam effects have been observed on e+e−

colliders and storage rings for many years. One of the in-
teresting phenomena is a so-called flip-flop effect. For the
behaviour of the bunches in meeting effects to be explained
many models have been presented. All of them may be di-
vided generally in two classes: studying the problem for a
solid beam and taking into account particle distribution in
the beam. The first kind of models takes the assumption
that the bunch distribution is a standard Gaussian distri-
bution and doesn’t change itself due to the opposite bunch
action. The second set of theories assumes the bunch distri-
bution may deviate from the Gaussian shape, but often they
suppose (for simplicity) the force from the opposite bunch
can be considered as for unchanged Gaussian density. It is a
good approximation for the problem to simplify, but if one
supposes the possibility of varying the bunch density from
the beam-beam effects one should consider the expression
for the force in more complicated form. The aim of this
paper is to present the self-consistent model taking into ac-
count the changes in the transverse distribution function of
the bunch that gives the possibility to calculate the exact
(in frames of this model) changed force from the opposite
bunch and to study some aspects of the flip-flop effect.

2 NON-GAUSSIAN DISTRIBUTION
FUNCTION

Let us begin from the standard 2D Gaussian distribution
function for the density of round beam in transverse phase
space:
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where we made a notation: x1 = x for the coordinate (ra-
dius) and x2 = x′ for the slope. In (1) s1 and s2 are re-

spective RMS beam sizes in x1 and x2 directions, r is the
usual correlation coefficient. We will assume for simplic-
ity r = 0 in the following, it corresponds to choosing the
Twiss parameter α = 0 at the interaction point (IP).

Starting from the Gaussian distribution (1) now we
are going to construct the non-Gaussian density function,
which describes changed form of the bunch in phase space
due to interaction with the opposite (also non-Gaussian)
one. We want to approximate the distribution with 3 known
second-order moments: (m11, m12, m22). Both of the me-
dians are assumed to be 0 because of the symmetry. Fol-
lowing [1] we will find the approximation as a truncated
series of partial derivatives of ρ0:
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The corresponding expressions for partial derivatives read:
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Also we will assume that ρ in (2) represents normalized
distribution.

Now we should express the set of coefficients
(C3, C4, C5) via assumed as known second-order moments
(m11, m12, m22). For this purpose we use the scheme of
“orthogonalization”, e. g. for the C3:
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We use quotes around orthogonalization to emphasize
that our base functions in (3) for ρ expansions are not or-
thogonal because of truncated form of (2). But this only
means we assume high-order moments are small as com-
pared with second-order moments and don’t take them into
consideration.

After simple calculation from (4) we obtain:
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The same technique gives for C4 and C5:
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Now we express (C3, C4, C5) via (m11, m12, m22) and
finally obtain for the density function ρ:
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with ρ0 from (1).
So, we have the function, which approximate the distri-

bution with known second-order moments. Put it in another
way, (7) has beforehand known (m11, m12, m22).

3 CALCULATING THE FORCE FROM
NON-GAUSSIAN CHARGE DENSITY

The form of expression (7) allows us to calculate the force
from the bunch having changed non-Gaussian density func-
tion. Usual method for this is applying directly the Gauss
law to the bunch with known charge density to find the
fields and then the force. If the bunch has the number of
particles N and the charge density ρ(r) then it produces
the kick to the particle with the coordinate x1 in counter
moving bunch:
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Here re is a classical electron radius, γ is a Lorentz factor.
Performing the integration in our case of the density (7)

we obtain the kick.
For simplicity in the following it is convenient express

the last formula via the value of beam-beam parameter for
round beam: ξ = Nreβ

∗/4πγs2
1, where β∗ is the unper-

turbed value of the β-function at the IP:
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Fig. 1 shows the dependence of the kick on the value
of m11 for non-Gaussian charge distribution in the bunch.
All the curves are normalized on the maximal value of the
standard Gaussian density function.

4 THE FLIP-FLOP EFFECT

The expression for the force from non-Gaussian bunch ob-
tained allows us now to apply it to the studying in our
model the flip-flop effect. As it is known this phenomenon
appears in such a way that the sizes of colliding bunches
may differ from the normal once in many times. Now we
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Figure 1: The dependence of the kick (9) on the value of
relative coordinate deviation x1/s1. Thin curve is the de-
pendence in the case of standard Gaussian density, thick
and dashed lines represent the case when the size of the
acting bunch is two times as large (and as small) as the nor-
mal size respectively

construct the self-consistent model of bunch distribution in-
cluding betatron oscillations, radiation effects and nonlin-
ear kick from the opposite bunch.

At first, we should transform the bunch distribution
through the nonlinear kick. We apply the transformation:

x1 → x1, x2 → x2 + ∆x2

with ∆x2 in the form (9) and with a substitution m11 →
M11 (the opposite bunch) to the distribution function (7).
Then we calculate the new values of the second-order mo-
ments of the distribution obtained. For this calculation to
simplify it is convenient to use a special order of integra-
tion: at first integrate over the x2 and then — over the x1.
In this case at first integration we may consider the compli-
cated (exponential) adding in x2 as a “shift” of the origin
and perform the integration. After the integration we get
the new values of the second-order moments and construct
the new distribution function (7) with these new values of
(m11, m12, m22).

Then we apply to this distribution the standard map: be-
tatron oscillation and the radiation effects in the form of
[2]. Now we have the distribution function at the end of
one revolution, hence we may calculate the final values of
the second-order moments and construct the self-consistent
system. Because of very complicated form all the follow-
ing analysis and solving has been made numerically.

The main conclusion from the solving this system ob-
tained is the flip-flop for the round beam may occur only if
the working point ν is near 0.5 (half-integer resonance). In
this case the flip-flop threshold is about ξ ∼ 0.1 with λ is
around 0.95. For more intensive damping (λ � 0.85) the
flip-flop effect takes place beginning from the very small
values of ξ. The two equal solutions exist before ξ exceeds
the value about 0.01, if ξ is large than this value no solu-
tions exist. At the working point ν = 0.1 there are some
ranges of only equal solutions existence. We also found
that there is no serious dependence of solutions on the val-
ues of the β-function at the IP (β∗), except the flip-flop at
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ν = 0.4 appears at higher values of ξ when we increased
the β∗. The behaviour of the density function near the flip-
flop limit is shown in the Fig. 2.
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Figure 2: The distribution function (7) near the flip-flop
threshold, when the areas of the negative density appear

5 CONCLUSION

Of course, our model has the same disadvantage as the
model presented in [1] — at some values of parameters the
density of phase space distribution (7) may lose its positive
definition and become negative. It is concerned with the
truncated form of the series expansion (2). We observed
that when parameters are far enough from the flip-flop
threshold there are no ranges of negative density, or they are
small. When the parameters are near the critical values the
area of negative density is increased, but the positive central
part has the size of about (8÷ 10)

√
m11 × (8÷ 10)

√
m22.

In our paper we presented the self-consistent model
of transverse distribution of the non-Gaussian colliding
bunches based on the series expansion of the standard
Gaussian distribution. This approach allows one to calcu-
late the force for the non-Gaussian bunch instead of using
the Gaussian expression for the force from opposite bunch
as in [1]. Our technique leads to more accurate account of
the beam-beam effects.
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A POSITIVENESS OF THE DENSITY
FUNCTION
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In this appendix we will discuss some criterions for the
density function to be positive. The expression (7) may
be rewritten in such a way:
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where p(x1, x2) is a polynomial of the two variables and
reads:

p(x1, x2) = m22s
4
1(x

2
2 − s2

2) − s2
2[s

2
2(−4s4

1 + s2
1x

2
1 +

+m11(s2
1 − x2

1)) − 2m12s
2
1x1x2 + s4

1x
2
2]. (11)

For the density ρ to be positive we need satisfying very sim-
ple conditions: the polynomial p(x1, x2) > 0 for x1 = 0,
x2 = 0 and it must be positive defined polynomial, i. e. the
eigenvalues of a matrix of its second-order derivatives both
are greater than zero. The requirement of p(x1, x2) > 0 at
the origin leads to:

m11

s2
1

+
m22

s2
2

< 4. (12)

And from the condition on the eigenvalues to be positive
we have:

s4
2(m11 − s2

1) + s4
1(m22 − s2

2) > 0 (13)

(m11 − s2
1)(m22 − s2

2) − m2
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The inequalities (12) and (13) define two lines on the
plane (m11, m22) and the condition (14) gives an addi-
tional constraint. These describe the area of allowed val-
ues of the second-order moments and this area corresponds
to the density function must be positive defined by the
physical sense. The situation is presented schematically in
Fig. 3.
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Figure 3: The area (hatched) of the allowed values of the
second-order moments for the density function to be pos-
itive. The curve 1 corresponds to the inequality (13), the
curve 2 illustrates the condition (12). The numbered points
have coordinates: 3 — (s2
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1), 0). Dashed lines are drawn with respect to the in-
equality (14)

From this picture it is clearly seen that for the density ρ in
our model to be positive the values of (m11, m22) should be
greater than their nominal values (s2

1, s
2
2). But in addition

they should not be very big, i. e. in the flip-flop state (when
the sizes are different in many times) the density function
has negative areas in most cases as we saw. In other words
the consistent bunch size should has slow increasing with
the intensity of the opposite bunch to avoid the unwanted
flip-flop state and this behaviour is in agreement with re-
quirement of a positiveness of the density function as we
have seen in numerical studying of our model.
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