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Abstract

We present some applications of general harmonic/wavelet
analysis approach (generalized coherent states, wavelet pa-
ckets) to numerical/analytical calculations in (nonlinear)
quasiclassical/quantum beam dynamics problems. (Naive)
deformation quantization, multiresolution representations
and Wigner transform are the key points.

1 INTRODUCTION

In this paper we consider some starting points in the appli-
cations of a new numerical-analytical technique which is
based on the methods of local nonlinear harmonic analy-
sis (wavelet analysis, generalized coherent states analysis)
to the quantum/quasiclassical (nonlinear) beam/accelerator
physics calculations. The reason for this treatment is
that recently a number of problems appeared in which
one needs take into account quantum properties of par-
ticles/beams. We mention only two: diffractive quan-
tum limits of accelerators (achievable transverse beam spot
size) and the description of dynamical evolution of high
density beams by using collective models [1]. Our starting
point is the general point of view of deformation quantiza-
tion approach at least on naive Moyal/Weyl/Wigner level
(from observables to symbols) (part 2). Then we present
some useful numerical wavelet analysis technique, which
gives the most sparse representation for two main operators
(multiplication and differentiating) in any Hilbert space of
states. Wavelet analysis is a some set of mathematical
methods, which gives us the possibility to work with well-
localized bases (Fig.1) in functional spaces and gives for
the general type of operators (differential, integral, pseu-
dodifferential) in such bases the maximum sparse forms.
The approach from this paper is related to our investiga-
tion of classical nonlinear dynamics of accelerator/beam
problems [2]-[10]. The common point is that any solu-
tion which comes from full multiresolution expansion in all
time scales gives us expansion into a slow part and fast os-
cillating parts. So, we may move from coarse scales of res-
olution to the finest one for obtaining more detailed infor-
mation about our dynamical process. In this way we give
contribution to our full solution from each scale of resolu-
tion or each time scale. The same is correct for the contri-
bution to power spectral density (energy spectrum): we can
take into account contributions from each level/scale of res-
olution. Because affine group of translations and dilations
(or more general group, which acts on the space of solu-
tions) is inside the approach (in wavelet case), this method
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resembles the action of a microscope. We have contribu-
tion to final result from each scale of resolution from the
whole infinite scale of spaces. Besides affine group sym-
metry, in part 3 we consider modelling, based on very use-
ful and quantum oriented Wigner transform/function ap-
proach (corresponding to Weyl-Heisenberg group), which
explicitly demonstrates quantum interference of (coherent)
states.

Figure 1: Localized contributions to beam motion.

2 QUASICLASSICAL EVOLUTION

Let us consider classical and quantum dynamics in phase
space Ω = R2m with coordinates (x, ξ) and generated by
Hamiltonian H(x, ξ) ∈ C∞(Ω;R). If ΦH

t : Ω −→ Ω is
(classical) flow then time evolution of any bounded clas-
sical observable or symbol b(x, ξ) ∈ C∞(Ω, R) is given
by bt(x, ξ) = b(ΦH

t (x, ξ)). Let H = OpW (H) and
B = OpW (b) are the self-adjoint operators or quantum
observables in L2(Rn), representing the Weyl quantization
of the symbols H, b [12]

(Bu)(x) =
1

(2πh̄)n

∫
R2n

b

(
x+ y

2
, ξ

)
·

ei<(x−y),ξ>/h̄u(y)dydξ,

where u ∈ S(Rn) and Bt = eiHt/h̄Be−iHt/h̄ be the
Heisenberg observable or quantum evolution of the observ-
able B under unitary group generated by H . B t solves
the Heisenberg equation of motion Ḃt = (i/h̄)[H,Bt]. Let
bt(x, ξ; h̄) is a symbol of Bt then we have the following
equation for it

ḃt = {H, bt}M , (1)

with the initial condition b0(x, ξ, h̄) = b(x, ξ). Here
{f, g}M (x, ξ) is the Moyal brackets of the observables
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f, g ∈ C∞(R2n), {f, g}M (x, ξ) = f�g − g�f , where f�g
is the symbol of the operator product and is presented by
the composition of the symbols f, g

(f�g)(x, ξ) =
1

(2πh̄)n/2

∫
R4n

e−i<r,ρ>/h̄+i<ω,τ>/h̄

·f(x+ ω, ρ+ ξ) · g(x+ r, τ + ξ)dρdτdrdω.

For our problems it is useful that {f, g}M admits the formal
expansion in powers of h̄:

{f, g}M(x, ξ) ∼ {f, g} + 2−j ·∑
|α+β|=j≥1

(−1)|β| · (∂α
ξ fD

β
xg) · (∂β

ξ gD
α
xf),

where α = (α1, . . . , αn) is a multi-index, |α| = α1 + . . .+
αn, Dx = −ih̄∂x. So, evolution (1) for symbol bt(x, ξ; h̄)
is

ḃt = {H, bt} +
1
2j

∑
|α|+β|=j≥1

(−1)|β| · (2)

h̄j(∂α
ξ HDβ

xbt) · (∂β
ξ btD

α
xH).

At h̄ = 0 this equation transforms to classical Liouville
equation

ḃt = {H, bt}. (3)

Equation (2) plays a key role in many quantum (semiclas-
sical) problem. Our approach to solution of systems (2),
(3) is based on our technique from [11] and very useful
linear parametrization for differential operators which we
present now. Let us consider multiresolution representa-
tion . . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . .. Let
T be an operator T : L2(R) → L2(R), with the ker-
nel K(x, y) and Pj : L2(R) → Vj (j ∈ Z) is projec-
tion operators on the subspace Vj corresponding to j level
of resolution: (Pjf)(x) =

∑
k < f, ϕj,k > ϕj,k(x).

Let Qj = Pj−1 − Pj is the projection operator on the
subspace Wj then we have the following ”microscopic or
telescopic” representation of operator T which takes into
account contributions from each level of resolution from
different scales starting with coarsest and ending to finest
scales [13]: T =

∑
j∈Z(QjTQj +QjTPj +PjTQj). We

remember that this is a result of presence of affine group in-
side this construction. The non-standard form of operator
representation [13] is a representation of an operator T as
a chain of triples T = {Aj , Bj ,Γj}j∈Z , acting on the sub-
spaces Vj and Wj : Aj : Wj → Wj , Bj : Vj → Wj ,Γj :
Wj → Vj , where operators {Aj , Bj,Γj}j∈Z are defined
as Aj = QjTQj, Bj = QjTPj , Γj = PjTQj. The
operator T admits a recursive definition via

Tj =
(

Aj+1 Bj+1

Γj+1 Tj+1

)
,

where Tj = PjTPj and Tj works on Vj : Vj → Vj .
It should be noted that operator Aj describes interaction
on the scale j independently from other scales, opera-
tors Bj ,Γj describe interaction between the scale j and

all coarser scales, the operator Tj is an ”averaged” ver-
sion of Tj−1. We may compute such non-standard repre-
sentations of operator d/dx in the wavelet bases by solv-
ing only the system of linear algebraical equations. Let
r� =

∫
ϕ(x − +) d

dxϕ(x)dx, + ∈ Z. Then, the representa-
tion of d/dx is completely determined by the coefficients
r� or by representation of d/dx only on the subspace V0.
The coefficients r�, + ∈ Z satisfy the usual system of lin-
ear algebraical equations. For the representation of op-
erator dn/dxn we have the similar reduced linear system
of equations. Then finally we have for action of operator
Tj(Tj : Vj → Vj) on sufficiently smooth function f :

(Tjf)(x) =
∑
k∈Z

(
2−j

∑
�

r�fj,k−�

)
ϕj,k(x),

where ϕj,k(x) = 2−j/2ϕ(2−jx− k) is wavelet basis and

fj,k−1 = 2−j/2

∫
f(x)ϕ(2−jx− k + +)dx

are wavelet coefficients. So, we have simple linear para-
metrization of matrix representation of our differential op-
erator in wavelet basis and of the action of this operator on
arbitrary vector in our functional space. Then we may use
such representation in all quasiclassical calculations.

3 WIGNER TRANSFORM

According to Weyl transform (observable-symbol) state or
wave function corresponds to Wigner function, which is
analog of classical phase-space distribution. If ψ(x, t), x ∈
Rn satisfies the Schroedinger equation

ih̄∂tψ = −(h̄2/2)�ψ + V ψ (4)

and W is the Wigner transform of ψ

W (t, x, ν) =
∫

e−iνyψ̄(t, x+ (h̄/2)y) ·
ψ(t, x − (h̄/2)y)dy, (5)

then W satisfies the pseudo-differential (ψDO) Wigner
equation

∂tW + υ∂xW − (i/h̄)P (V )W = 0, (6)

where ψDO operator P (V ) is

P (V )f(x, ν) = 1
(2π)n

∫
e−iνy

[
V (x+ h̄

2 y) −

V (x− h̄
2 y)

]
·
( ∫

eiyξf(x, ξ)dξ
)
dy (7)

In quasiclassical limit h̄ → 0 the operator P (V ) converges
to −∂xV · ∂ν . We consider it in [11]. On Fig. 2 we present
calculations [14] of Wigner transform for beam motion,
represented by four gaussians, which explicitly demon-
strates quantum inteference in the phase space.

We give more details in [11].
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Figure 2: Wigner transform
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