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Abstract for the contribution to power spectral density (energy spec-

We present the applications of variation — wavelet analystrum)' we can take |_nto accognt (_:ontrlbutlons from t_aach
. . S ! .~ Tevel/scale of resolution. Starting in part 2 from Hamilto-
to polynomial/rational approximations for orbital motionin . o 7 : : .
nian of orbital motion in magnetic lattice with additional

transverse plane for a single particle in a circular magne’qg;

lattice in case when we take into account multipolar expa _cIJ(r:de ;(erii,a\llvse g'gzr]rrS]ISv?trhlrr]a%irr:j ;’32?;'222;;221#&&;?:
sion up to an arbitrary finite number and additional kick y Y

terms. We reduce initial dynamical problem to the finite?;:u;ﬁ \d/'an:#ilggfigﬁ;glgsa?nalt{zszzg“gf'tcroerﬁrejcetrtastlljorj
number (equal to the number of n-poles) of standard alge- y pactly sup

: . . ; Rorted wavelets.
braical problems. We have the solution as a multiresolutio

(multiscales) expansion in the base of compactly supported
wavelet basis. 2 PARTICLEIN THE MULTIPOLAR

FIELD

1 INTRODUCTION The magnetic vector potential of a magnet withpoles in

In this paper we consider the applications of a new numer(=artesian coordinates is

I(:al—analyt_|cal techmquc_a which is based on the met.hods of A— Z Kofo(,y), @)
ocal nonlinear harmonic analysis or wavelet analysis to the ~

orbital motion in transverse plane for a single patrticle in a

circular magnetic lattice in case when we take into accountheref,, is a homogeneous function efandy of ordern.
multipolar expansion up to an arbitrary finite number andrhe real and imaginary parts of binomial expansion of
additional kick terms. We reduce initial dynamical prob- )

lem to the finite number (equal to the number of n-poles) of ful@,y) = (z +iy)" @)
standard algebraical problems and represent all dynamic

variables as expansion in the bases of maximall Iocalize%!)rreSIOOnd to regular and skew multipoles. The cases
P Y = 2ton = 5 correspond to low-order multipoles:

in phase space functions (wavelet bases). Wavelet analyaﬁa drupole, sextupole, octupole, decapole. The corre-
is a relatively novel set of mathematical methods, whic@ponding H:amiltonian (’[10] for deéignation)' )
gives us a possibility to work with well-localized bases in '

functional spaces and gives for the general type of opera- P2+ p2
tors (differential, integral, pseudodifferential) in such bases H(2,pz, Y, Dy, ) = TU +
the maximum sparse forms. Our approach in this paper is 1 72 %
based on the generalization of variational-wavelet approach (—2 — k1(3)> e+ ki (s)= (4)
from [1]-[8], which allows us to consider not only polyno- p(s) 2 2
mial but rational type of nonlinearities [9]. The solution i
has the following form ~Re | Y % (w4 iy) Y
n>2

2 =200+ > zwit), wi~2 (D)

. Then we may take into account arbitrary but finite number
J=Z

of terms in expansion of RHS of Hamiltonian (4) and from

which corresponds to the full multiresolution expansion irPur point of view the corresponding Hamiltonian equations

all time scales. Formula (1) gives us expansion into a slo@f motions are not more than nonlinear ordinary differen-

partz3l°* and fast oscillating parts for arbitrary N. So, wetial equations with polynomial nonlinearities and variable

may move from coarse scales of resolution to the finest orf@efficients. Also we may add the terms corresponding to

for obtaining more detailed information about our dynami-kick type contributions of rf-cavity:

cal process. The firsttermin the RHS of equation (1) corre- I o

sponds on the global level of function space decomposition A, = ——— -V, -cos (/f—’T) -0(s — s0) (5)

to resolution space and the second one to detail space. In 2k L

this way we give contribution to our full solution from each or localized cavityV (s) = Vo - d,(s — so) with d,(s —

scale of resolution or each time scale. The same is corregf) — Eziz §(s— (so+n- L)) at positionsy. Fig.1 and
*e-mail: zeitlin@math.ipme.ru Fig.2 present finite kick term model and the corresponding
T hitp:/Avww.ipme.ru/zeitlin.html; http://www.ipme.nw.ru/zeitlin.html multiresolution representation on each level of resolution.
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2500 Let us consider a set of functions

| Bi(t) = a5 (Qu) + P ™

1500 1 and a set of functionals

. Fy(z) = /0 1 ®;(t)dt — Qiwiyi 5, (8)

il ] wherey;(t) (y;(0) = 0) are dual (variational) variables. It
JL is obvious that the initial system and the system
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Figure 1: Finite kick model. ] ) .
are equivalent. Of course, we consider sdti{x) which
S do not lead to the singular problem with; (z), whent = 0

- N ort =1,i.e.Q;(x(0)),Qi(x(1)) # co.

. Now we consider formal expansions foy, y;:

* zi(t) = zi(0) + Y Men(t) yi(t) =D njen(t), (10)

s : -

B JY:P whereg,(t) are useful basis functions of some functional

! VL space [2, L?, Sobolev, etc) corresponding to concrete

- | problem and because of initial conditions we need only

- { ep(0)=0,r=1,..,N, i=1,..,n,
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Figure 2: Multiresolution representation of kick. where the lower index i corresponds to expansion of dy-

namical variable with index i, i.exz; and the upper index
3 RATIONAL DYNAMICS r corresponds to the numbers of terms in the expansion of

dynamical variables in the formal series. Then we put (10)

The first main part of our consideration is some variationdnto the functional equations (9) and as result we have the
approach to this problem, which reduces initial problem tdollowing reduced alge'brau]ial system of equations on the
the problem of solution of functional equations at the firsg€t of unknown coefficients;” of expansions (10):

stage and some algebraical problems at the second stage.

We have the solution in a compactly supported wavelet ba- L(Qij, A ar) = M(Pig, A, B1), (12)

sis. Multiresolution expansion is the second main part qf ere operators L and M are algebraization of RHS and
our construction. The solution is parameterized by solur s of initial problem (6), wheré\ (11) are unknowns of
tions of two reduced algebraicall problems, one is n_onlinfeduced system of algebraical equations (RSAE)(12).

ear and the second are some linear problems, which areQij are coefficients (with possible time dependence) of

obtained from one of the next wavelet constructions: thEHS of initial system of differential equations (6) and as

method of Connection Coefficients (CC), Stationary SUbéonsequence are coefficients of RSAE.

division Schemes (SSS). P,; are coefficients (with possible time dependence) of
RHS of initial system of differential equations (6) and as
3.1 \Variational Method consequence are coefficients of RSAE.
I = (i1, 0g42), J = (J1, ..y Jp+1) @re multiindexes,
Our problems may be formulated as the systems of ordby which are labelledy; and 3; — other coefficients of
nary differential equations RSAE (12):
d(El‘
Qi(x)ﬁ :Pz(l',t), T = (x17"'7xn)7 (6) ﬂ] = {ﬂjlu-jzﬂrl} = / H Pirs (13)

i=1,..,n, maxdeg P;=p, maxdegQ;=q 1sjrsptl
K3 3

where p is the degree of polinomial operator P (6)
with fixed initial conditionsz;(0), where P;, Q; are not

more than polynomial functions of dynamical variahtes ar = {0, ) = Z Piy oo i o Pin 2
and have arbitrary dependence of time. Because of time di- aeriqr2
lation we can consider only next time interval:< ¢ < 1. (14)
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where q is the degree of polynomial operator Q (6)—
(1a gt 2)! (p.is = d@zb/dt

Now, when we solve RSAE (12) and determine unknown
coefficients from formal expansion (10) we therefore ob-
tain the solution of our initial problem. It should be noted
if we consider only truncated expansion (10) with N terms
then we have from (12) the system &f x n algebraical
equations with degreé = max{p, ¢} and the degree of
this algebraical system coincides with degree of initial dif-
ferential system. So, we have the solution of the initial
nonlinear (rational) problem in the form

N
zi(t) = 2:(0) + Y M X(t), (15) 25
k=1

where coefficients\¥ are roots of the corresponding re-
duced algebraical (polynomial) problem RSAE (12). Con- [1]
sequently, we have a parametrization of solution of initial
problem by solution of reduced algebraical problem (12).
The first main problem is a problem of computations of 2]
coefficientsa; (14), 35 (13) of reduced algebraical sys-
tem. These problems may be explicitly solved in wavelet
approach.

Next we consider the construction of explicit time solu-
tion for our problem. The obtained solutions are given in [3]
the form (15), whereX (t) are basis functions and, are
roots of reduced system of equations. In our cését) are
obtained via multiresolution expansions and represented by
compactly supported wavelets akflare the roots of corre- [4
sponding general polynomial system (12) with coefficients,
which are given by CC or SSS constructions. According to
the variational method to give the reduction from differen- [5]
tial to algebraical system of equations we need compute the
objectsa; andgy [1],[9]. (6]

Our constructions are based on multiresolution appro-
ach. Because affine group of translation and dilations is
inside the approach, this method resembles the action of a
microscope. We have contribution to final result from each
scale of resolution from the whole infinite scale of spaces. 7,
More exactly, the closed subspakg(j € Z) corresponds
to level j of resolution, or to scale j. We consider a mul-
tiresolution analysis of.?(R") (of course, we may con-
sider any different functional space) which is a sequence 0{8]
increasing closed subspadés

LVeocCcViicVycWVicVaC.. (16)

satisfying the following properties:

Nvi=0. Uv=r'®".

je€z JEZ

9]

On Fig.3 we present contributions to solution of initial (0]

problem from first 5 scales or levels of resolution.
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Figure 3: Contributions to approximation: from scaleto
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