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Abstract

An efficient method for calculating scattering and disper-
sion parameters, resonant frequencies, and fields in a 2-D,
arbitrarily shaped geometry is presented. This work is done
to analyze and design high power waveguide components
and cross-field RF devices. An arbitrary geometry is de-
scribed by a piecewise planar boundary. The method is
based on the scattering matrix technique. The simulated
geometry is divided into regions. The boundary contour
mode-matching method is used to obtain the scattering ma-
trices for each region. Electromagnetic fields in each re-
gion are expanded in a series of plane waves. Due to the
expansion, all integration in the mode-matching process is
carried out analytically. The scattering matrices of the re-
gions are combined using a generalized scattering matrix
technique to obtain the scattering matrix and field distri-
bution for the full geometry. Representation of the fields
as a functional expansion is a useful feature of the method
for further particle tracking in a cross-field device. The
calculated results are compared with other electromagnetic
models and excellent agreement is obtained.

1 INTRODUCTION

The mode-matching method, in combination with the
generalized scattering matrix (S�matrix) technique, has
turned out to be very efficient in simulating of the inter-
action of charged particles and electromagnetic structures,
such as accelerating structures and cavities [1, 2]. In this
paper we describe a method that uses the scattering matrix
approach for design cross-field devices and planar waveg-
uide components. The design of cross-field devices such
as magnetrons and cross-field amplifiers requires methods
for simulation of cavities that have an arbitrary 2D shape
[3]. The methods should be able to calculate the dispersion
parameters of a periodic structure, the resonant frequen-
cies of a cavity, and the corresponding fields. Simulation
of the devices includes tracking of electrons in fields repre-
sented as a sum of resonant modes. Functional expansion
of the electro-magnetic fields is desirable for the efficient
calculation of the particle dynamics. The use of the func-
tional field expansion and the azimuthal periodicity of the
device’s cavity makes methods that are based on scattering
matrices preferable for the simulation. Another application
of the method is the design of planar high-power waveg-
uide components. Short time of the simulation make the
process of optimization of scattering parameters more ef-
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ficient. Boundary contour mode-matching in a piecewise
bounded 2D region is applied to obtain the scattering ma-
trix and field amplitudes [4]. The Galerkin method is used
for the mode-matching procedure. The geometry is divided
into regions, and electromagnetic fields in each region are
expanded in series of plane waves. The choice of plane
waves as basis functions for mode matching [5] and the
piecewise description of the geometry contour allow us to
use, instead of numerical, analytical integration. Scattering
matrices from the regions are combined using the gener-
alized scattering matrix technique. Resonant and periodic
conditions [1] are used to obtain resonant frequencies, dis-
persion parameters, and corresponding fields.

2 MODE MATCHING

We divide the simulated geometry into regions. For each
region we find relations between scattered waves as well as
the fields-inside-region using non-orthogonal expansion of
the fields (see e.g. [4, 5]).
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Figure 1: An inhomogenous waveguide region with planar
sidewalls fed by rectangular waveguides (ports) through
planar apertures Y 0

w
. The sidewalls are defined by

points s = 1; 2:::6. The ports are defined by points
(xp; yp); (xp+1; yp+1), and p = 1; 3; 5. � - total sidewall
surface including ports.

Geometry We will discuss the cylindrical geometry
which is uniform in the z-direction. It consists of planar
sidewalls and waveguide apertures, and planar top and bot-
tom walls located at z = 0 and z = L respectively, as
illustrated on Fig. 1. The geometry in the x; y plane can
be described by a set of points with coordinates (xs; ys)
where s = 1; :::N 0

; here N 0 is the total number of side-
walls and apertures. Apertures that are connected to rect-
angular waveguides are described as ports with coordinates
(xp; yp); (xp+1; yp+2). Here p is the index of the starting
point for the correspondent port. In the particular case
(shown on Fig. 1) the inhomogeneous region has three
sidewalls, and three ports with index p = 1; 3; 5.
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Plane waves Plane waves are one of the solutions of
Maxwell’s equations for a geometry that consist of two par-
allel infinite walls located at z = 0 and z = L. These
waves do not have phase variation along a vector which
is perpendicular to the direction of the power flow. Plane
waves can be divided into two sets. Each set has ei-
ther magnetic (hz-wave) or electric (ez-wave) field along
z�axis. All fields have a harmonic ej!t time (t) depen-
dence. Here ! is the angular frequency. Explicitly, we will
write fields for the hz�wave as

Hh
z (x; y) = sin(kzz)e

�jk?(xC�+yS�);
~Eh
?

(x; y) = �h sin (kzz)(�~xS� + ~yC�)e
�jk?(xC�+yS�);

~Hh
?

(x; y) = �j kz
k?

cos (kzz)(~xC� + ~yS�)e
�jk?(xC�+yS�);

where C� = cos� and S� = sin�; kz = �mL, m is
the mode index, k2 = k2z + k2

?

, where k = !=c, � is the
angle of ~k

?
with respect to the x�axis, and �h = !�0=k?.

Similar expression could be written for ez�wave.
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Figure 2: Layout of a waveguide port connected to a
waveguide discontinuity. Note the local coordinate system
(x0; y0; z). Dimensions of the port along the z and y 0 axes
are L and Y 0 respectively.

Waveguide modes A rectangular aperture of a waveg-
uide discontinuity can be described as a part of a rectangu-
lar waveguide with the same cross-section. Such a waveg-
uide has its coordinate system (x0; y0; z), where x0 is the
waveguide axis as is shown in Fig.2. The waveguide fields
can be separated into TE- and TM- modes with respect to
the x0 axis. Fields along the x0-axis in the waveguide with
infinitely conducting walls with y 0-size Y 0 can be described
by basic scalar functions

 e
r(x0)(z; y

0

) = sin(km(z)z) sin(kn(y)y
0

);

 h
r(x0)(z; y

0

) = cos(km(z)z) cos(kn(y)y
0

);

where km(z) = �m=L, kn(y) = �n=Y 0 and n > 0

for E-modes. Note that we use the same index m for
waveguide modes and plane waves. The waveguide modes
and plane waves with kz 6= km(z) do not interact. The
electric fields transverse to x0 we obtain from equation
~Er? = r

?
 e
r(x0) + r

?
 h
r(x0) �

~y0: Here r = (m;n) is
a combined mode index.

Field expansion The total electric and magnetic fields
in a waveguide discontinuity (Fig. 1) are represented by
a sum of Nl plane waves. We will choose weighting co-
efficients � in the sum to satisfy the boundary conditions.

Fields on the boundary � of a geometry can be expressed
as

~Eg

� =

X
q

(�hq
~Ee
q + �eq

~Eh
q );

~Hg

� =

X
q

(�hq
~He
q + �eq

~Hh
q ):

Here ~Ee
q ;

~He
q are the magnetic and electric field for the ez

plane wave, and ~Eh
q ;

~Hh
q are the fields for the hz plane

wave, q = (m; l) is a combined mode index, and the � is
the total transverse surface, including ports (Fig.1). Index
l = 0; 1:::Nl � 1 describes discretization in the direction
~k
?

, and kz = �m=L. The direction-angle of each l-th
wave is �l = 2�l=Nl. In contrast to modes in the rectangu-
lar waveguide sections, the plane waves are not orthogonal
along the boundary. The waveguide discontinuity is fed by
rectangular waveguides (ports). Tangential fields in the w-
th port are

~Ew
t =

X
r

(aerw + berw)
~Ee
rw?p
Ne
rw

+

X
r

(ahrw + bhrw)
~Eh
rw?p
Nh
rw

;

~Hw
t =

X
r

(aerw � berw)
~He
rw?p
Ne
rw

+

X
r

(ahrw � bhrw)
~Hh
rw?p
Nh
rw

;

where r = (m;n) is the combined index for waveguide
modes, Nh

rw and N e
rw are normalization constants for the

waveguide modes. We normalize each waveguide mode
to unit power. The boundary conditions which need to be
imposed to resolve the fields in the geometry are

~Eg

t� =

�
~Ew
t for � = Y 0

w

0 else;
; (1)

~Hg

t� = ~Hw
t for � = Y 0

w: (2)

Here w is the port index, and ~Eg

t� and ~Hg

t� are tangential
electric and magnetic fields inside the discontinuity.

Mode matching procedure The following mode
matching procedure is general. It is valid for the plane
wave expansion as well as for other types of expansions.
First, we enforce electric field continuity by integrating
both sides of (1) with plane wave magnetic fields ( ~H 0

e

q0)
�

and ( ~Hh
q0 )

� over the boundary �. For simplicity we drop
h and e indexes. We define the product of “plane wave -
plane wave” integration as

A11
qq0 =

Z
�

~Eq �
~H�

q0 � ~n ds
0; (3)

and

A21
pq0 =

Z
Y 0
w

~Ep �
~H�

q0 � ~n ds
0: (4)

Here ~n is normal to �, and p = (r; w) is a combined index
for all the waveguide modes in the ports. For the case of a
piecewise planar boundary and the plane wave expansion,
there are three types of plane wave-plane wave integrals
and four plane wave - waveguide integrals. Each integral
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is evaluated analytically. Using the products (3) and (4) we
can write the boundary conditions (1) in matrix form as

A11~� = A21
(~a+~b); (5)

where ~� is the vector of weighting coefficients and ~a, ~b are
vectors of incident and reflected waves, respectively. Sec-
ond, we enforce magnetic field continuity by integrating
the complex conjugate of (2) with the waveguide electric
fieldsEp0 . The left part of the continuity condition we write
using (4) as [(A21

)
�
]
T ~�: We simplify the right part using

orthogonality of the modes in a waveguide. Due to the cho-
sen normalization, A22

pp0
=

R
Y 0

w

~Ep �
~H�

p0
� ~n ds0 = Æpp0 :

Therefore A22
= I is the identity matrix. The condition of

magnetic field continuity becomes

A22
(~a�~b) = I(~a�~b) = [(A21

)
�
]
T ~�: (6)

Scattering matrix and fields in the waveguide discon-
tinuity By eliminating ~� from (5) and (6), we obtain
the ratio between amplitudes of the incident and reflected
modes as

~b = (I + C)
�1

(I � C)~a; (7)

where C = A21
(A11

)
�1

((A21
)
�
)
T . The resulting matrix

S = (I + C)
�1

(I � C) is the general scattering matrix of
the geometry. We substitute (7) in (6) and obtain

~� = [A21
(A11

)
�1

]
T
(S + I)~a: (8)

The result is a linear dependence of the weighting coef-
ficients of the plane waves on the incident amplitudes of
waveguide modes.

Properties of the A11 matrix Matrix A11 is Hermi-
tian, and has zeros along the diagonal. The matrix becomes
ill-conditioned with increasing discretization number N l.
Due to the ill-conditioning, the numerical calculation of
the inverse matrix (A11

)
�1 is difficult. We changed ba-

sis functions to a linear combination of the plane waves in
order to make the matrix A11 well defined. For the par-
ticular implementation we choose a transformation that is
based on an expansion of a Bessel function (see [5]). An
element of the matrix that represents the transformation

is T�l =
(j)

(��N
�
)

Nl

cos

�
2�jl�Nlj

Nl

�
; for l > Nl, and for

l � Nl T�l =
(j)

(��N
�
)

Nl

sin

�
2�jl�Nlj

Nl

�
; where l is the

index of the plane wave and � = 0; 1:::2, N� � 1 is the
index of the Bessel function. In numerical simulation, typ-
ical numbers are N� = 7 and Nl = 16. The matrix for the
fields inside the discontinuity is A011

= TA11
(T �

)
T : And

the matrix of “outside coupling” is A 012
= A12

(T �
)
T : The

method works well for practical geometries, but it has lim-
itations due to nonorthogonality of functions in the field
expansion. The matrix A011 become ill-conditioned with
increasing N�( > 20 ) or with decreasing !. To cope with
the problem we renormalize matrix T with increasing of
N� and use cylindrical waves expansion for low ! (see [4]).

3 CALCULATION OF ARBITRARY
GEOMETRY

Using mode matching we obtained the scattering matrix (7)
and the relation between external waves and internal fields
(8) for each region. Now, using generalized scattering ma-
trix technique (see e.g. [1, 6]) we can calculate external
scattering parameters and fields for whole geometry. The
numerical implementation of this technique is straightfor-
ward and requires much less computer time than the calcu-
lation of the scattering matrix for each region.

4 NUMERICAL RESULTS

A computer code has been developed based on the finite
plane-wave series expansion. The code is part of a cross-
field device, computer-aided design program. The num-
ber of plane waves depends on frequency and varies from
16 to 40. As an example we consider a waveguide T-
junction. The size of the junction is 1 cm � 1cm. The
fields have no z-variation. The solution has been verified
by the finite-element software package HFSS, developed
by Ansoft corporation. Fig. 3 shows the amplitudes of
some typical scattering parameters, calculated by contour
mode-matching (curves) and HFSS (symbols). It can be
seen that there is no noticeable discrepancy in the ampli-
tudes. It is worth mentioning that two modes propagate in
the waveguides at frequencies above 15 GHz.
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Figure 3: Amplitudes of scattering parameters for 1cm�1cm E-
plane T-junction. Lines – contour mode matching, symbols – fi-
nite element code HFSS.
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