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PERTURBATIVE APPROACH TO NONLINEAR CHROMATICITY
 OF A CIRCULAR ACCELERATOR
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Using the expressions for the higher order terms of a non-
linear dispersion function of a ring accelerator, we derive
the higher order formula for the nonlinear chromaticity.
Numerical estimation of the second order nonlinear chro-
maticity of the SPring-8 storage ring is carried out, which
agrees fairly well with the measurement.

The larger a size of a storage ring becomes, the bigger value
the chromaticity reaches, which should be corrected by
strong sextupole magnets. Hence, for the purpose of pre-
cisely controlling the chromaticity, it is necessary to know
the nonlinear behavior. In this paper we derive the pertur-
bative expression for the higher order terms of nonlinear
chromaticity in terms of the nonlinear dispersion function,
whose general formula we have derived before [1].

Calculating the nonlinear chromaticity of the SPring-8
storage ring as an example, we prove the validity of the
formula.

As usual, we employ the curvilinear coordinate system,
where the Hamiltonian describing the motion of a particle
is

where is the fractional deviation of the momentum
with the nominal momentum , and is

the horizontal curvature, and ’s ( ) are the
strengths of quadrupole, sextupole, and so on. Here rep-
resents the Gauss symbol and the binomial coefficient.
In our formulation the following properties for the magnet
system are assumed:

There is no vertical curvature.

There is no skew magnetic element.

All magnets are separate function type.

All magnets are approximated to have no fringe field
or to possess hard edge.

The off-momentum trajectory is described by the disper-
sion function and the conjugate momentum
satisfying the following equations

which can be solved by the perturbative expansion

Eliminating the momenta , we derive the recurrent equa-
tions for higher order terms of the nonlinear dispersion
function

(1)

where explicit forms of some low order inhomogeneous
terms are ,

and so on. Off course, the lowest equation ( ) of Eq.
(1) is the one determining the linear dispersion. In [1], by
solving the recurrence equation Eq. (1), the explicit expres-
sions of the higher order terms of the dispersion function up
to 4-th are given.

To calculate the chromaticity, we perform the canonical
transformation which shifts the origin of phase space to

. The transformation can be
performed with the generating function

which yields the transformation equations
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where the identity transformation for , and has been
suppressed.

From now on, we consider the linear motion of the
betatron oscillation around the off-momentum trajectory

. Then, the Hamiltonian with respect
to , , and up to second order is given by

The equations of motion obtained from the above Hamilto-
nian are

where ’s ( ) are the instant transformation matri-
ces:

After performing the local variable transformation

for and respectively, we have the “Hill’s
equation”

with

According to the standard description of the Hill’s equa-
tion, we can construct the transform matrix

From the transfer matrices for , one can eas-
ily deduce those for as

(2)

As usual one can relate the tune to the
transfer matrix as

(3)

Owing to the relation (2) and the periodicity of the lattice
functions, we can find that the tunes for the - system
to be equal to those in the - system.

Now, we perturbatively calculate the nonlinear chro-
maticity based on the defining equation (3). From now on,
for the simplicity, we omit the suffix denoting the coordi-
nates such as or if not necessary. Expanding the
phase advance throughout the circumference with respect
to the momentum deviation

we have

where

and so on.
On the other hand, since

the expansion of the instant transfer matrix with respect
to

gives
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and so on.
The zeroth order equation merely defines the tune of the

central energy ( ) (see Eq. (3)). As easily found

the first order equation is the well-known definition of the
linear chromaticity: for horizontal

where we have performed the partial integration. After
lengthy calculation, the second order nonlinear chromatic-
ity is given by

with the Fourier components of

for ( ). Here . The ex-
plicit forms of , and as well as the third order for-
mula are given elsewhere [2].

Applying our formula of the nonlinear chromaticity to the
SPring-8 storage ring and comparing the result with the
measurement, we confirm the validity of the formulation.
The lattice of the SPring-8 storage ring is double bend
achromat, lattice, composed of 48 unit
cells. Four of 48 cells lack bending magnets for the purpose
of installing the long straight sections of 30 m. To cancel
the chromatic effect, the strong sextupole magnets are in-
stalled, so that the nonlinearity of the optics is considerably
strong.

We have three sets of the chromaticity measurement
data, which were performed at the different operation
points ( 43.16, 21.36 ), ( 43.31, 21.36 ) and
( 43.46, 21.36 ). In all the cases the linear chromaticities
are set to ( 7, 4 ).

In Figure 1, the measured horizontal tunes are repre-
sented by the solid circles, and the vertical one by the open
ones, respectively. The error of the tune measurement,
mainly coming from the fluctuation of the tune itself, is less
than 0.005. To convert the rf frequency into the momentum
deviation, the momentum compaction factor calculated by

Figure 1: The measured tunes as a function of momen-
tum deviation. The red circles (triangle) correspond to the
measured horizontal (vertical) tunes of operation point with
central energy ( 46.16, 21.36 ). The green and the blue
symbols indicate the ones of ( 43.31, 21.36 ) and ( 43.46,
21.36 ), respectively. The corresponding calculated results
are represented by the solid lines.

means of the nonlinear dispersion, is used, so that the mo-
mentum deviation estimation error is presumed to be less
than 3 %.

In the numerical calculation, the summation of the
Fourier components is performed with confirming the con-
vergence. Although the convergence is poor for a large ma-
chine like the SPring-8 storage ring, even the second order
calculation shows the exceedingly well agreement with the
measurement.

For the larger momentum deviation the discrepancy
between the measurement and the calculation gradually
grows up. It suggests the effect of the higher order terms
than the second.

We derived the exact formula for the second order chro-
maticity, whose efficiency is proved by the application to
the SPring-8 storage ring. In order to improve the approxi-
mation, one should take the next order effect into account.
The third order formula will be given in [2].
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