
DEVELOPMENT OF THE PYTHON/TK WIDGETS FOR THE CONTROL
SYSTEM BASED ON EPICS

T. T. Nakamura, T. Katoh, N. Yamamoto, KEK, Tsukuba, Japan

Abstract

During the commissioning of accelerators, many
application programs are built and some of them are
scrapped every day. Quick development of a large
amount of application software and keeping their quality
high are essential for the efficient operation and machine
studies of the accelerators. Especially, to construct
excellent GUI (graphical user interface) is key
technology. EPICS (Experimental Physics and Industrial
Control System)1 has several graphical editors to develop
GUI. Although they are easy to use, they are not so
flexible to use customized widgets. On the other hand,
development of GUI by programming languages
provides full flexibility. Python is a simple but powerful
programming language suitable for the quick
development of the application programs. Combining
Python with Tcl/Tk widget set is one of the most
powerful tools. In KEKB accelerators control system,
several widgets for controls have been developed. They
are not only for EPICS, but also general purpose. Using
object-oriented feature of Python, these widgets have
been easily customized for EPICS. Not only these
widgets are presented, but the framework of the
development of them is also discussed.

1 INTRODUCTION
In KEKB accelerators control system[1], EPICS has

been used as the core software component. The basic
components of EPICS are OPI (Operator Interface,
which is a UNIX based workstation), IOC (Input/Output
Controller, which is VME/VXI based chassis containing
a processor) and network. In the IOC there is a memory
resident database. A PV (Process Variable) is an atomic
component of the database. EPICS provides CA
(Channel Access) protocol, which provides network
transparent access to IOC database based on client/server
model. The PV accessed through CA is sometimes called
“channel”.

In EPICS standard distribution, there are several kinds
of graphical editors to build application programs with
GUI. Although they are easy to use and powerful for
simple operations, they have neither enough flexibility to
use user-customized widgets nor programming capability
to implement complex control logics.

In KEKB accelerators control system, we have been
extensively using Python as a programming language to

1 http://epics.aps.anl.gov/asd/controls/epics/EpicsDocumentation/WWWPages/

build application program on OPI. Python is an easy to
learn, interpretive programming language. It is not only
simple but also has powerful features: efficient high-
level data structures, object-oriented programming and
rich libraries, which cover wide range of areas. They
make it powerful tool for rapid application development.
Python has some GUI extension modules. Among them
Tkinter is most popular. “Tkinter” is an interface module
to Tcl/Tk, with which Python gains ability to build GUI
using Tk widgets. We have also developed “ca” module,
which is an interface module to EPICS CA.

Although the combination of Tkinter and ca module
has powerful capability to build any kind of control
application programs, most of the non-expert
programmers still feel complexity about GUI
programming. Thus we decided to develop a ready-made
widget library convenient to build control application
programs.

The development policies we adopted are as follows.
(1) Effort of application programmer should be

minimized.
(2) Development of the widgets should be done not

only for EPICS system but also adaptable to
other purposes. In other words, general-purpose
widget could be reusable also for EPICS system.

(3) The mechanism to introduce CA capability into
the general-purpose widget should be simple,
systematic and flexible.

Following sections show how we have designed the
framework of the widget library development.

2 DESIGN OF CAVAR CLASS

2.1 Basic design of caVar class

Some Tk widgets accept a variable to configure itself
dynamically. The variable is implemented in Tcl and
accessible through several classes that are derived from
“Variable” class in Tkinter. We introduced special class
named “caVar”, which is derived from the Variable class
in Tkinter. The caVar class provides special functions to
communicate with EPICS PV through CA. From caVar
class we define four derived classes: caStringVar,
caIntVar, caDoubleVar and caBooleanVar. We call the
instance of these four classes “CA-variable” for
simplicity. caVar class has “assign” method, which
associates the CA-variable with a channel specified by
the channel name. The assignment is done in one of the

1865Proceedings of EPAC 2000, Vienna, Austria

three modes: “monitor mode”, “put mode” and “both
mode”.

In the “monitor mode”, the assigned channel is
monitored and the value of the CA-variable is
automatically updated whenever the value of the channel
is changed. In the “put mode”, whenever the value of the
CA-variable is modified, the new value is automatically
put to the associated channel. In the “both mode” the
CA-variable has same capability as in the monitor mode.
In addition to the monitoring, its “set” method puts a
value to the associated channel.

Programming using caVar class takes following two
steps. First, create CA-variable and assign a channel to it.
Then, pass it to the general-purpose widget that can
accept a variable. Since all of the EPICS specific
features are confined in caVar class, the development of
a new widget has little constraint. The only requirement
is that the widget must be designed to accept a variable
as usual Tk widgets do.

2.2 Additional features of caVar class

The constructor of the caVar class accepts some
optional arguments.

Using the “conv” option, a conversion function can be
specified, which introduces data conversion between the
CA-variable and the channel. In the “monitor mode” or
the “both mode”, the value from the channel is
converted by this function, and then set to the CA-
variable. In the “put mode”, the value of the CA-variable
is converted by this function, and then put to the channel.

Using “format” option, a format string with C
sprintf()-style can be specified, which is used for the
conversion from any type to string type. This special
conversion is performed after the conversion by the
“conv” option if specified.

A conversion function for the set method in the “both
mode” can be also specified by “rconv” option.

3 DESIGN OF CAWIDGET CLASS

3.1 Basic design of caWiget class

Although using the general-purpose widget together
with CA-variable is simple and flexible way, there is still
some room to decrease amount of coding for non-expert
programmers. They prefer to create a widget instance by
single function call. Thus we also decided to develop
“CA-widgets”, which are the customized version of the
widgets for EPICS CA. To develop the CA-widgets, we
introduced “caWidget” class. The caWidget is the
abstracted class that manages CA related functions. Its
constructor creates a CA-variable and assigns the
channel automatically.

The customizing procedure is very simple by using
multiple-inheritance feature of Python. (1) Define the
customized class as derived class from both caWidget
class and the original widget class. (2) Define several
(typically four) class constants. (3) Define some methods
to override original ones if necessary. Method
redefinition is usually not necessary even for the
constructor method.

3.2 Additional features of caWidget class

caWidget class provides some additional features to
the original widget: Channel Information Display (CID)
and Dynamic Configuration Rule (DCR).

While middle mouse button is pressed on the widget,
CID appears. The CID is a small window that contains
some information about the assigned channel. This
mechanism is automatically introduced when the widget
is defined as the derived class of caWidget. Figure 1
shows an example of a CID.

Each PV has severity, which indicates that the PV is
in some abnormal states or not. To warn operators about
such an abnormal state, it is desirable to change colour
or some appearance of the widget according to the
severity. DCR provides such capability. The widget may
change its configuration dynamically by the severity of
the assigned channel. The CA-widget can define default
rule that maps each severity into the configuration. Also
user can define his/her own rule with “rule” option of the
widget constructor. Figure 1 shows an example of the
widget turned red by the MAJOR severity. In addition to
the severity, the configuration rule when CA is
disconnected can be defined.

4 EXAMPLES
We have developed several widgets for the control

system. We have also developed customized version of
them for EPICS using caWidget. Following subsections
show some of them as examples. Some widgets in
Tkinter such as Label, Checkbutton and Radiobutton
have been also customized using caWidget.

4.1 caBitPattern widget

Figure 1 shows four examples of caBitPattern widget.
Each bit of the integer value of the channel is shown by
a small indicator with circular or rectangular shape.

4.2 caWritableLabel widget

Figure 2 shows an example of caWritableLabel widget.
It shows the value of the assigned channel as a character
string. When the left mouse button is double-clicked on
the widget, a dialog box appears to let user input a new
value.

Proceedings of EPAC 2000, Vienna, Austria1866

Figure 1: Four examples of caBitPattern widget in a top-level window. The middle lower one shows its CID (Channel
Information Display) just below it. The right one is caused red by the MAJOR severity of the assigned channel.

a) b)

Figure 2: a) Example of a caWritableLabel widget. b) A dialog box appears to let user input a new value when the
left mouse button is double-clicked on the caWritableLabel widget.

5 SUMMARY
Framework of the development of the Python/Tk

widgets for EPICS based control system has been
designed and implemented. Since all of the EPICS
specific features are confined in caVar class and
caWidget class, the design of a new widget gets much
free hand. The object-oriented feature of Python allows
even most of the already existing widgets to be
customized easily for EPICS in a few lines of coding.

REFERENCES
[1] N. Yamamoto et al., “KEKB control system: the

present and the future”, PAC-99, New York, 29
Mar.-2 Apr. 1999

1867Proceedings of EPAC 2000, Vienna, Austria

