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Abstract 

The emittance growth and halo formation for a 
mismatched beam of a 1-D Gaussian distribution in a 
uniform focusing channel were examined by means of a 
macro-particle simulation and an isolated nonlinear 
resonance theory. Nonlinear fields in an actual particle 
distribution have been shown to significantly affect both 
the halo’s location and size. For further application of the 
isolated resonance Hamiltonian analysis, the 2-D 
simulation code based on the Hybrid Tree code method 
has been developed. The results manifested the nonlinear 
resonance excited by beam core oscillation similar to that 
in the 1-D case. 

1  INTRODUCTION 
One of the major issues in high-power accelerators is 

the activation of accelerator components due to beam 
loss. The beam loss must be reduced to a suffuciently low 
level to allow hands-on-maintenance. In order to produce 
an acceptable design, it is important to understand the 
mechanisms of emittance growth and halo formation that 
result in beam loss. 

An understanding of halo-formation mechanisms in 
circular rings seems to be quite difficult, because 
numerical calculations over a sufficient number of turns 
require unrealistic CPU times and memory and repeated 
betatron oscillations through a huge number of lattice 
elements takes a key role in the resonant interaction. We 
have pursued a strategy to develop a useful analytic 
model capable of predicting the position of the halo as a 
function of the beam and machine parameters for a 
realistic beam distribution. As the first step of this 
strategy, halo formation in a 1D Gaussian distribution in 
a uniform focussing channel has been numerically 
examined, and a second-harmonic nonlinear resonance 
excited by the rms core oscillation has been identified to 
be a driving mechanism of halo formation. This view has 
been confirmed by an analytic approach based on isolated 
nonlinear resonance theory [1,2]. The simulation and 
theory have shown that highly nonlinear components in a 
real distribution strongly affect the halo location. The 
highlight of the first step [3] is summarized in this paper. 

As the second step, halo formation mechanisms in the 
2-D model are explored. For this purpose, the 2-D 
simulation code in a more realistic lattice has been 
developed. Nonlinear resonances were excited by core 
oscillation, which inherently originates from the lattice. 

Essential features of the 2-D simulation are described in 
this paper. 

2  NONLINEAR-RESONANCE ANALYSIS 
OF HALO-FORMATION EXCITED BY 

BEAM-CORE OSCILLATION 
We chose to apply the current study to the 12GeV 

proton synchrotron (KEK-PS). Most of the calculation 
parameters were taken from the KEK-PS, where the 
injection energy is 500MeV and the bare tunes are νx = 
7.15 and νy = 6.23. In order to manifest the key role of 
the space-charge effects in halo formation, an extremely 
high current, where the maximum incoherent tune shift is 
1.85, was studied. 

A 1-D simulation was used to understand the detailed 
and dynamic processes involved in the physical 
phenomena. In the simulation, a beam distribution is 
assumed to be both infinite and uniform in the horizontal 
and longitudinal planes and finite and non-uniform in the 
vertical plane. Space-charge fields affect the betatron 
motion of the beam in the vertical direction. In addition, 
it is assumed that the beam propagates through free space 
so that the effect of the image charge is ignored. 

The simulations were carried out for three cases of 
mismatched beams with Gaussian, waterbag and square-
cosine distributions. The square-cosine distribution is 
defined as f = f0cos2[π(y2+y’2)1/2 {2R(y,y’)}-1], where R(y,y’) 
is the distance from the origin to the outer edge through 
(y,y’) in phase space. All initial distribution functions 
have the same total current and the same rms emittance 
as the matched beam. The rms emittance growth of 
Gaussian and square-cosine distributions quickly arrive at 
the steady state after less than a few tens  
of turns, whereas the rms emittance of the waterbag 
beam still grows over 1200. The beam density of a beam 
with an initial square-cosine distribution approaches a 
Gaussian distribution in the steady state. On the other 
hand, a beam with a waterbag distribution tends to 
become flat because of redistribution towards the beam 
edge. The phase-space projections suggest that particles 
escaping from the core are responsible for the growth of 
rms emittance. In addition, it is remarkable that there are 
two resonance islands. Since there are no external 
nonlinear fields in the uniform focusing channel, the 
sources driving the nonlinear resonances have been 
identified to be the space-charge self-fields. The 
simulation results also show a notable oscillation of the 
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rms beam, which is simply induced by mismatching. A 
parametric resonance between the single-particle motion 
and the rms beam core oscillation can be excited when 
the depressed betatron tune νβ and the rms core 
oscillation tune νc satisfy νβ /νc  = i/j, where i and j are 
integers. The lowest dominating resonance is obviously a 
second-harmonic resonance which is capable of creating 
two resonance islands. Certainly, the FFT of the core 
oscillation exhibits a single sharp peak at νc = 10.45. The 
results strongly suggest that the major source of the 
second-harmonic resonance is the rms beam core 
oscillation. 

In order to confirm the speculation that the rms beam 
core oscillation is capable of driving the second-
harmonic nonlinear resonance, we have developed an 
analytic approach using an isolated resonance 
Haniltonian. Here, the beam distribution is assumed to be 
a Gaussian distribution with the rms beam size oscillating 
at a single frequency. This is σ(s) = σ0{1 + δcos(ωcs)}, 
where σ0 is the averaged rms beam size, δ is the 
maximum deviation from σ0 and ωc is the frequency of 
the beam core oscillation. Then the Gaussian distribution 
in the rest frame is given by n(y,s) = N0exp[-y2/{2σ(s)2}] 
/{(2π)1/2 σ(s)}, where N0 is the total number of particles 
per unit length in the rest frame. The electric field of this 
beam associated with the charge density is written in the 
form of a Taylor expansion. Introducing action-angle 
variables (φ,J) ,  the Hamiltonian is expressed as 

H = ωβ J − A0

−1( )n Fn φ, s( )
n! 2n +2( ) 2n +1( )
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where A0=2σ0e
2Ν0/{γ2ε0mv2(2π)1/2} and Fn(φ,s) = [1 - (2n + 

1)δcos(ωcs)]cos2n+2φ. The second-harmonic resonance is 
excited in the case that the phase of Eq. (1) slowly varies 
with s [5]. Because the second-harmonic resonance is 
excited in the case of νβ/νc=1/2, it is found that the the 
slowly oscillating phase is 2φ - ωcs. The rapidly 
oscillating terms, except for the terms including 2φ - ωcs, 
disappear after averaging the Hamiltonian of Eq. (1) over 
many turns. The averaged Hamiltonian is called the 
isolated resonance Hamiltonian. A canonical 
transformation from (φ,J) to (ψ,J), where ψ = φ - ωcs/2 is 
physically a rotation in phase space, is made to remove 
any time-dependence from the isolated resonance 
Hamiltonian. The isolated resonance Hamiltonian, Hiso, is 
written as 

Hiso =α 0 J − A0 βnJ n+1 1

n +1
−

2n +1

n + 2
δ cos 2ψ 

  
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∞
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where, α0 = ωβ - ωc/2 and βn = (-1)n(2n)!(n!)-3(n+1) 
(4σ0

2ωβ)-n-1. In order to obtain a necessary and sufficient 
limit in summation of Eq. (2), the values of the resonance 
width were calculated as a function of limit. The limit 
must be more than 11. A lower limit gives the wrong 
results. Here, 15 has been applied. A contour plot of the 
Hamiltonian and the simulation result for the case of an 
initial square-cosine beam are shown in Figs.1. The 

values of ωc, σ0 and δ at the steady state are chosen based 
on the simulation results. The calculated locations of the 
resonance islands are in good agreement with the 
simulation. We have reached the conclusion that the 
second-harmonic nonlinear resonance is driven by the 
beam-core oscillation of the nearly Gaussian distribution. 
In addition, Fig. 1 clearly indicates that the outer edge of 
the resonance corresponds to the location of the halo. 
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Figure 1:(a) Simulation result exhibited in the action-
angle space. (b) Contour plot of the Hamiltonian (2). σ0 = 
4.38 mm corresponds to J = 251.2 m2rad-1s-1 at φ = 0 rad. 
 

3  2-D SIMULATION RESULT 
As the second step, the 2-D case has been under 

consideration. In order to delineate halo formation 
mechanisms in the 2-D case, a 2-D simulation code in 
more realistic focusing channels has been developed. The 
electric field originating from the beam space charge is 
calculated by the Hybrid Tree code method. The dense 
core region is assigned by PIC-style charge in the similar 
way to that in Ref.4. Then, the Tree code method [5] is 
applied over the total region of interest. Effects of the 
image charge are ignored. The space charge forces are 
included as delta-function-like kicks in orbit tracking, 
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where  M is the transfer matrix of linear focusing system 
and ∆s is the longitudinal step. For choosing ∆s, the 
saturation of the rms beam size σ of the simulation result 
was monitored as a function of ∆s. As a result, ∆s = 
10cm was applied. 

To justify the code, the simulation results were 
compared with the results of ACCSIM [4]. The same 
beam parameters and machine conditions were assumed 
for this bench mark test. Both results have been 
confirmed to be in excellent agreement with each other. 
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Figure 2: RMS emittance growth 

 
The simulations were carried out for mismatched 

beams with Gaussian distribution in a typical FODO 
lattice (KEK 12Gev PS). The bare tunes (νx,νy) were 
chosen as (7.125,5.251) and (7.250,5.171). Here, the 
momentum spread was assumed to be 0%. The maximum 
incoherent tune shifts were 0.25 in the horizontal plane 
and 0.45 in the vertical plane. The rms emittance and 
phase space projection were measured at the position of 
the flying wire monitor [6]. The horizontal and vertical 
rms emittance growth of the (7.250,5.171) beam quickly 
arrive at the steady state after 5 turns (see Fig.2) because 
of the filamentation caused by mismatching. The vertical 
rms emittance growth of the (7.125,5.251) beam quickly 
arrive also, whereas the horizontal rms emittance grows 
until 40 turns because of the nonlinear resonance as 
shown in Fig.3. Since any nonlinear magnet component 
are not included in these calculations, a driving source of 
the nonlinear resonances is attributed the space-charge 
self-fields. This resonance seems to slowly oscillate with 
phase of 4φ - ωcs. This is understandable from the fact 
that the depressed tune in the horizontal plane is 7 and 

the beam core oscillates 28 times per 1 turn because of 
the lattice consisting of 28 cells. This will be proved by 
the 2-D isolated resonance Hamiltonian analysis. 
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Figure 3: The phase space projection in the horizontal 
plane  

4  CONCLUSION 
Parametric interactions between a core oscillation and 

a highly nonlinear motion of individual particle drive the 
second-harmonic resonance for a 1D Gaussian 
distribution. The second-harmonic resonance is a source 
of emittance growth and results in beam halo which is 
created as an outer edge of the resonance islands. The 
location of halo is analytically tractable using the 
canonical equations derived from the isolated resonance 
Hamiltonian. Nonlinearity in the particle motion is 
crucial to determine the location of halo; the second-
harmonic terms down-fed from higher-order nonlinear 
terms are included in order to accurately estimate the 
halo location. 

The 2-D simulations have suggested driving 
mechanism of halo similar to that in 1-D case. The 
nonlinear parametric resonance theory which is under 
developing seems to be applied there. A whole analysis 
will be given in the coming paper. 
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