
DYNAMIC EXECUTION OF SCRIPTS ON EPICS IOC

N. Yamamoto, KEKB Control Group, KEK, Tsukuba, JAPAN
M. Takagi, Kanto Information Service, Tsuchiura, JAPAN

Abstract

Introduction of a scripting language on EPICS IOC(a VME
single board computer) allows users to construct a flexible
control system. Authors will discuss the possible appli-
cations of such scripting language and will show some of
implementation of these applications.

1 INTERPRETED LANGUAGE IN A
CONTROL SYSTEM

Use of the interpreted language in an accelerator control
system is not a new idea. TRISTAN[1], predecessor of
KEKB[2], control system used NODAL language devel-
oped at CERN[3] for its control system. Nodal language is
a BASIC like interpreted language designed for a control
system. One of its unique features is a remote execution of
Nodal program within a program. As shown in a sample
program, Figure1, a NODAL program can send a part of it-
self to the other computer and can get a result of execution
in the remote computer.This function can be used to access
resources only available at the specific computer. It can be
also used to reduce data transfer overhead in some cases.
This ability should be compared with the today’s network
agent technologies.

Experience of NODAL in the TRISTAN control system
encouraged us to use interpreted languages in the KEKB
control system. KEKB control system [4] was constructed
upon the frame work of EPICS toolkit[5]. Scripting lan-
guages, SAD[7] and Python[8], are used in the system for
the development of high level applications [6].

The followings are the few of merit for the use of inter-
preted languages in the control system.

1. User Participation These interpreted languages are
easier to use than the compiler languages such as C,
C++. End users , including accelerator physicist , de-
veloped many useful applications for the accelerator
control.

2. incremental development Interpreted language can be
also used for rapid prototyping of an application.
Once specification is fixed, performance bottleneck
part will be converted C/C++ modules. It reduces total
efforts and time for the development.

3. Use of existing resources Usually these languages
come with rich set of libraries, including GUI widgets.
We can use these libraries where these are appropriate.

2 INTERPRETED LANGUAGE ON IOC

Although interpreted languages are successfully used in
the KEKB control system, its use is limited only on
a Unix workstations. These tools are also useful to
test EPICS runtime database on IOC(Input Output Con-
troller:VME single board computer with hardware inter-
faces) through CA(Channel Access:Data access protocol
defined in EPICS toolkit). In this way, 1) you can access
the data on IOC only through CA, and 2) it will increase
network traffic when you need a large amount of data on
IOC.

If we can use the interpreted language on IOC, 1) It can
be used as diagnosis tools on IOC instead of VxShell in the
vxWorks 1 . VxShell accept most of C expression but it
cannot handle control statements such as if-statement. In-
terpreted language, such as Python, allows a user to write
and to run a short program to test IOC, interactively. 2) It
is also possible to send a scripts through the network and
get the result of the script back from an IOC. It would au-
tomates a complex diagnosis procedure without increasing
network traffic. 3) A script language can be used to extend
behaviour of EPICS record. CALC record in the standard
EPICS record set supports “.CALC” field where users can
put a C-like expression. If user wants to test more complex
expression which cannot fit in the limit of CALC record,
user needs to use a SUBR(subroutine) record and a sub-
routine written in C. If EPICS can have CALC-like record
which reads a Python script, it can be used instead of SUBR
record/C function combination. PYTHON-record should
allow user to change a script field dynamically as a CALC
field in the CALC record. In this sense, Python-record will
have a flexibility of CALC record and the power of SUBR
record.

10.1 A=1; B= 2
10.2 EXEC <REMOTE> 20 A B C

/*Execute a statement group 20
on the CPU <REMOTE> */

20.1 C = A + B
20.2 REMIT C

/*Return a SUM of A and B
to the sender */

Figure 1: A sample NODAL program using remote execu-
tion of a program segment

1VxWorks is a registered trademark of Wind River Systems, Inc.

1883Proceedings of EPAC 2000, Vienna, Austria

3 PYTHON ON VXWORKS

Python was firstly ported onto vxWorks by Jeff Stearns2 .
We have tested his port of Python and made modification
we needed to compile and run it in our environment(HP-
UX 10.2 as a host and Force Power Core 6750 as a target
CPU). We also ported Python/EPICS CA(Channel Access)
interface to the Python on VxWorks[9]. Python on Vx-
works supports most of builtin functions(exit and quit are
exception) and builtin modules. Some modules including a
thread module, needs some work to run on VxWorks. The
other modules may be irrelevant on VxWorks.

Python Interpreter uses static variables internally. It pre-
vent us from having two copies of Python interpreter on
same IOC. However, It will be still possible to run Python
threads in a single Python interpreter, when thread mod-
ule is supported in Python on VxWorks. For the first and
second use of Python on IOC, alternative to the vxShell, it
is not the restriction. For the third use of Python on IOC,
extension tool of EPICS records, it is essential to support
multiple instance of the interpreter or thread.

4 PYTHON SERVER ON EPICS IOC

In this section, we will see the sample sessions of remote
execution of Python program on IOC. In these examples,
we use python server program, pysvr.c, which is included
in the standard Python distribution. When pysvr is running
it waiting for a connection from client. Once a connection
is established, it read Python statements sent by the client
, execute it in its interpreter, and then returns the result as
a string to the client. The client can be any program which
can send and receive data to/from TCP socket, telnet for
example.

The figures 2 and 3 show a sample session of pysvr. In
this example, pysvr program runs on IOC and a clients is a
telnet program running on HP-UX workstation.

In the second example(Figures 4 and 5), a python pro-
gram on a host workstation uses telnetlib module to estab-
lish connection to a pysvr on an IOC and send python script
to the remote IOC for execution. Results of each execution
will be printed out on the terminal on the workstation. In
the program sent to the IOC, an average of data in a wave-
form record with 1024 elements is calculated. Calculation
of average is performed on IOC, so it is not necessary to
send all values in the waveform record through a network.
It reduces the potential traffic on the network considerably.

As shown in these examples, the pysvr.c program proves
the possibility and usefulness of remote execution of
Python scripts on IOC. However, more improvements are
required for the use in the control system. Firstly, Python
on VxWorks should support a thread module so that pysvr
can accept multiple connections. Threads can be eas-
ily mapped to tasks on vxWorks, and vxWorks support
semaphore library. It should not be difficult to develop

2see http://www.python.org/download/download other.html for more
information

Connected to IOCEPAC.
Escape character is ’^]’.
>import ca
>ch=ca.channel("CO_IOC:COCCC:CLOCK")
>ch.wait_conn()
>ch.get();ch.pend_event(0.1)
10
>ch.val
’2000/06/19 14:25:20’
>import sys
>sys.exit()

Figure 2: Sample log of a PYSVR session on host
computer side

-> taskSpawn "PythonServer",184,0,128000,pysvr
Listening on port 4000...
Start thread for connection 18.
run_command: import ca
run_command: ch=ca.channel("CO_IOC:COCCC:CLOCK")
run_command: ch.wait_conn()
run_command: ch.get();ch.pend_event(0.1)
run_command: ch.val
run_command: import sys
run_command: sys.exit()
End thread for connection 18.

Figure 3: Sample log of a PYSVR session on IOC side

wrapper codes for Python interpreter on VxWorks.

Secondly, it should returns a value as a binary format
rather than as a string , which current version of pysvr pro-
gram returns. If a pysvr client program get result as a string,
it should be evaluated again before it is used in the client
program. Use of binary data format can reduce overhead
of conversion of a return value to and from string form.
Python already has a module to serialise structured data
and object, Pickle and cPickle, in the standard Python li-
brary . Original data can be easily retrieved from pickled
data using the loads() function. These library can be used
as a base of binary data exchange over network.

5 PYTHON ON IOC AS AN EXTENSION
TOOL OF EPICS RECORD

Once Python on vxWorks supports the thread module,
new EPICS record type PYTHON, which evaluate Python
scripts in its process function, can be developed. Global
lock for Python interpreter is created at IOC initialization
and Python thread is created at record initialization.A script
attached to the record will be compiled into an intermediate
code using Python’s compile function and this intermediate
code will be evaluated at the record processing. API to ac-
cess EPICS runtime database can be easily developed using
SWIG(Simple Wrapper Interface Generator)[10].

Proceedings of EPAC 2000, Vienna, Austria1884

import telnetlib, time, ca
host=("iocepac",4000)
def test():

try:
tn=apply(telnetlib.Telnet,host)

except telnetlib.socket.error:
print "cannot connect to ",host
return None

except:
print "telnet open error"
return None

res=tn.read_until(">")
print res
def execute(line,tn=tn):

tn.write(line+"\n")
res=tn.read_until(">")
print "%s"%line
print res

for line in ("import ca",
"ch=ca.channel(\"sample:wf:double\")",
"ch.pend_event(0.1)",
"ch.get(); ch.pend_event(0.01)",
"def add(x,y): return x+y",
"ave=reduce(add, ch.val)/len(ch.val);ave",
):

execute(line)
tn.close()

if __name__ == "__main__":
test()

Figure 4: a sample python program which runs on a host
computer

>>> test()
>
import ca
>
ch=ca.channel("sample:wf:double")
>
ch.pend_event(0.1)
10
>
ch.get(); ch.pend_event(0.01)
10
>
def add(x,y): return x+y
>
ave=reduce(add, ch.val)/len(ch.val);ave
511.5

Figure 5: output of the python program shows in Figure 4

PYTHON record can be used where CALC record is
used and it can be used to prototype a subroutine used with
SUBROUTINE record. Dynamical reloading of library and
scripts makes development of a prototype easy.

6 CONCLUSION

We pointed out the possible use of interpreted language
on an EPICS IOC. Prototype examples of python server
on IOC were shown. Problems of current implementation
were pointed out and outline of solutions is discussed.

REFERENCES

[1] S-I Kurokawa, et al., “The TRISTAN Control System”, Nucl.
Instr. and Meth., A247, (1986) pp. 29-36. ; T. Mimashi et
al., “The rejuvenation status of TRISTAN accelerator control
system”, Nucl. Instr. and Meth., A352 (1994) 128-130.

[2] “KEKB B-Factory Design Report”, KEK Report 95-7, Au-
gust 1995

[3] M.C. Crowley-Milling and G.C. Shering, “The NODAL Sys-
tem at the SPS”, CERN 78-08

[4] T. Katoh et al., “Present Status of the KEKB Control Sys-
tem”, ICALEPCS ’97, Beijing, China, November 3-7, 1997;
N. Yamamoto et al., “KEKB control system: the present and
the future.”, PAC 99, New York City, March 1999.

[5] L. Dalesio et al. , “The Experimental Physics and In-
dustrial Control System Architecture: Past, Present,
and Future”, Proc. ICALEPCS, Berlin, Germany, 1993,
pp 179-184. W. McDowell et al.:EPICS Home Page,
http://epics.aps.anl.gov/asd/controls/epics/EpicsDocumen-
tation/ EpicsGeneral/

[6] N. Yamamoto et al, “USE OF OBJECT ORIENTED INTER-
PRETIVE LANGUAGES IN AN ACCELERATOR CON-
TROL SYSTEM”, ICALEPCS 99, Trieste, Italy, 1999

[7] K.Oide et al, “SAD home page”, URL:http://www-acc-
theory.kek.jp/SAD/sad.html

[8] M. Lutz, “Programming Python”, O’Reilly & Associates,
Inc. USA, 1996; G.van Rossum, “Python Home Page”, URL:
http://www.python.org/

[9] N. Yamamoto, ”Python/Tk in EPICS”, EPICS collab-
oration meeting, KEK, May, 2000,URL:http://www-
acc.kek.jp/EPICS meeting/Presentations/NoboruYamamoto/
PythonTK.html

[10] D.M. Beazley, “SWIG:Simplified Wrapper and Interface
Generator”, URL: http://www.swig.org/

1885Proceedings of EPAC 2000, Vienna, Austria

