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Abstract

Eigenmode analysis is a fundamental method to character-
ize the interaction of beam and accelerator components.
Several codes are able to calculate eigenmodes but all of
them act on the complete structure which is under consid-
eration. Thus they are restricted to a certain complexity of
the resonator depending on the computational capabilities.
We present a method that overcomes this restriction utiliz-
ing a description of structure components in terms of their
wave scattering properties. The eigenmodes are found as
the solutions of an eigenproblem of small dimension, once
the S-parameters of each structure section are known. Their
calculation can be performed in parallel. Sections of iden-
tical shape have to be calculated only once. Furthermore it
is possible to specify a frequency range to search for eigen-
modes without the knowledge of all modes with lower fre-
quency. The method is explained in detail in the paper; its
capabilities are illustrated using a prototype example which
allows to compare with the direct eigenmode calculation.

1 INTRODUCTION

The rf analysis of accelerator components is often based
on the knowledge of their eigenmodes. Length and com-
plexity of some structures demand even in modern compu-
tational environment a significant amount of resources to
perform direct eigenmode calculations. This paper presents
a method called Coupled S-Parameter Calculation (CSC)
which allows to split the whole section into several sub-
sections that are easy to handle. CSC determines both the
eigenfrequencies and the corresponding field distributions
using the scattering parameters of each section.

First a general procedure to calculate the coupling be-
tween the external ports of an arbitrarily structured system
of scattering sections is described. Resonators which are
entirely closed by definition are handled as a special case
that has no external coupling. Then the problem reduces to
the repeated solution of low dimensional eigenvalue equa-
tions parameterized by frequency. Occurrence of eigen-
value 0 indicates resonance frequencies. The eigenvectors
belonging to eigenvalue 0 are the amplitude patterns of all
the waveguide modes in the system that are needed to cal-
culate the corresponding field distributions.

The method is demonstrated using an example that al-
lows for comparison with direct eigenmode solution using
MAFIA 4.20 [1] running on a 2 GB RAM workstation.
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Figure 1: A rf-system of three sections with external
(P1; P2; P6; P7) and internal ports (P3; P4; P5)

2 THEORY

Scattering- or S-parameters are used to describe signal re-
flection and transmission between each of the ports of rf-
components. For ann-port structure they can be repre-
sented by the (n�n)-matrix S where the entryS ij de-
scribes the transmission of a signal from portj to port
i. TheSij are complex functions of the frequency. With
~a = (a1; : : : ; an)

T and~b = (b1; : : : ; bn)
T describing the

input and output signal amplitudes (resp.) the S-matrixSk

of thek-th section forms the relation

~bk = Sk ~ak =

 
S11 � � � S1n

.

.

.

.

.

.
Sn1 � � � Snn

!
k

~ak (1)

The method is not restricted to single moded waveguide
ports. Every mode has its individual scattering parameters
and therefore increases the dimension of the matrix system
by one.

2.1 Open Structures

If ~a and~b hold the signals of all sections simultaneously
both can be arranged in a way thatS becomes a diagonal
block matrix of theSk

S =

�
S1 0

Sk
0 SN

�
(2)

The incident signals forming~a are sorted now in a dif-
ferent manner, dividing them into a vector~I of signals in-
cident at the external ports and a vector~Aint of signals that
are scattered from neighbouring sections. The correlation

between this new vector of signal quantities

�
~Aint

~I

�
and~a

is expressed by a permutation matrixF.

~a= F

�
~Aint

~I

�
(3)
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Figure 2: Geometry used to compare the direct eigenmode calculation with CSC.

A second permutation matrixK mediates both the feed-
back in the system (i.e. the fact that the outgoing signal of
one section often is the incident signal of another port) and
the signal order permutation inverse to (3). Thus it cou-
ples similar to (3) all scattered signals to a vector carrying
first the internal signals and second the vector~R of signals
going outwards the system:

�
~Aint

~R

�
=K~b (4)

Combining (1) to (4) results in the following matrix-
vector-equation:

�
~Aint

~R

�
=KSF

�
~Aint

~I

�
= G

�
~Aint

~I

�
; (5)

summarizing the matrix product in a new matrixG. The
matricesF andK are determined by the systems topology
whereas the rf properties are carried byS. G has an inter-
nal block structure determined by the dimensions of~Aint:

�
~Aint

~R

�
=

�
G11 G12

G21 G22

��
~Aint

~I

�
; (6)

which leads to the following system of equations:

~Aint = G11
~Aint +G12

~I (7)
~R = G21

~Aint +G22
~I (8)

Thus the coupling between signals coming from and going
to the system is given by

~R =

�
G21 (1�G11)

�1
G12 +G22

�
~I; (9)

which means that the overall S-parameter matrixS tot

yields as:

Stot = G21 (1�G11)
�1
G12 +G22 (10)

2.2 Resonators

In the case of a resonator problem there are no open ports.
Then holdsdim( ~R) = dim(~I) = 0 and only the coupling
between the internal ports remains. Further it follows from
(7) that

(1�G11(!0)) ~Aint =
~0 (11)

has to be fulfilled. Eq.(11) is only valid for discrete fre-
quencies!0, which are the resonance frequencies aimed
for.

In case of frequencies that satisfy (11) the vector~Aint

contains the amplitudes of the waveguide modes that com-
pose the resonant field in the entire resonator.~Aint is found
as the eigenspace - usually one vector - of the eigenvalue 0
which is the core of the matrix(1�G11(!0)). The fields
themselves are computed afterwards in separated runs with
incident wave amplitudes given from~Aint.

A software system has been set up that performs both
the broadband S-parameter determination of the elemen-
tary sections (MAFIA-T, Microwave Studio [1]), the CSC
calculation (Mathematica [2]) and the field calculations
(MAFIA-T, MAFIA-W, Microwave Studio).

3 NUMERICAL RESULTS

To verify the procedure a test geometry was modelled
(see Fig. 2) which is split into five subsections. The S-
parameters of each single subsection were calculated using
the MAFIA time domain solver T3 in a frequency range of
1:2 : : : 1:75 GHz.

Simultaneously the eigenfrequencies of the whole struc-
ture were computed with MAFIAs eigenmode solver E to
verify the solution. As shown in Tab.1 the frequencies
found by the CSC technique match very well those calcu-
lated directly.

Table 1: Comparison of eigenfrequencies found by
CSC and by MAFIA-E in the frequency range of
1:2 : : : 1:75 GHz.

CSC MAFIA E-mod. relative error
1.21208 GHz 1.210308 GHz 1:46� 10

�3

1.24005 GHz 1.240023 GHz 2:18� 10
�5

1.34807 GHz 1.347277 GHz 5:88� 10
�4

1.38342 GHz 1.382202 GHz 8:81� 10
�4

1.44258 GHz 1.442681 GHz �6:99� 10
�5

1.46395 GHz 1.463867 GHz 5:67� 10
�5

1.50325 GHz 1.502614 GHz 4:23� 10
�4

1.53157 GHz 1.540615 GHz �5:91� 10
�3

1.60483 GHz 1.603293 GHz 9:58� 10
�4

1.65345 GHz 1.652757 GHz 4:19� 10
�4

1.68786 GHz 1.682436 GHz 3:21� 10
�3
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Figure 3: Electric field of thef = 1:50325 GHz-eigenmode computed using CSC (upper) and MAFIA-E (lower).
(Jumps in vector size are artificially introduced by different display scalings).
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Figure 4:Ey-component of the eigenmodes withf = 1:44258 GHz (first row) and(f = 1:50325 GHz)

(second row) along two path segments perpendicular to the port plane comparing CSC and MAFIA-E.

The field distributions of the eigenmodes in all sub-
sections were also computed by MAFIA T3. Monochro-
matic waves of the resonance frequency are excited at every
port with amplitudes and phases given by CSC. The field
is monitored after it stabilized to the steady state, which
yields the resonant field pattern in the according resonator
section. Fig. 3 shows examples of field patterns found
by CSC and compared with MAFIA-E. The fields match
like the frequencies very precisely the results of the direct
eigenmode calculation.

4 CONCLUSIONS

The CSC-technique presented here is a method to split the
calculation of rf properties of complex structures into sev-
eral small runs. After dividing the structure in sections
the S-parameters of every section are calculated separately.
Combination of them yields either the S-matrix of the com-
plete structure if it has open ports or its eigenfrequencies

and eigenmodes if it is a closed resonator.
The advantages of this technique are the possibility to

calculate the S-parameters of every subsection parallel on
different machines, to exploit possible symmetries or rep-
etitions of subsections and to specify frequency ranges for
the eigenmodes searched for.

If a direct calculation is possible, the overall effort of
this procedure is essentially higher, but CSC gives the pos-
sibility to compute eigenmodes of structures which cannot
be handled directly, or to perform optimization iterations
calculating only modified sections.
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