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Abstract

The strong focusing required for high brightness in a
third generation light source presents challenges in
maintaining a good dynamic aperture.  A traditional
approach to improving dynamic stability has relied on
fixing the tunes of the lattice away from major
resonances, to minimise the strengths of the driving terms.
We present here the results of an alternative approach,
based on controlling the phase advances over different
sections of the lattice, to reduce the magnitude of
damaging terms in the single-turn map.  This has yielded
good results in the case of the storage ring for DIAMOND
[1], the UK third generation light source.

1  DIAMOND LATTICE DESIGN
CHALLENGES

Users of synchrotron light sources demand high
brightness photon output, good stability and reliability of
operation.  For the storage ring lattice, these properties
depend on a low natural emittance, and a large dynamic
aperture to ensure efficient injection and good beam
lifetime.  Unfortunately, the strong focusing required to
reach low emittance leads to a large negative chromaticity
of the lattice, which must be corrected with strong
sextupoles to reduce the effects of the head-tail instability.
The nonlinearities introduced by the sextupoles tend to
reduce the dynamic aperture.

Significant effort is needed to resolve the conflicting
requirements for low emittance and large dynamic
aperture.  For DIAMOND, we are currently working on a
3 GeV, 24 cell double-bend achromat storage ring, with
either four-fold or six-fold symmetry and a circumference
around 500 m.  User consultations have led to a target
emittance of 3 nm rad, and we are aiming for a dynamic
aperture of ±20 mm horizontally and ±10 mm vertically in
the long straights, including magnetic field and alignment
errors.  Presently, we are working for a momentum
acceptance of 4%, though lifetime studies could lead to a
requirement for larger acceptance.

2  LINEAR PROPERTIES
Traditionally, a double-bend achromat is tuned to give

zero dispersion in the straight sections.  The natural
emittance of the lattice is determined by the beta and
dispersion functions, at the entrance to the dipoles.  The

minimum emittance that can be achieved under the zero-
dispersion condition is [2]:
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where qC  is the quantum constant, γ  the relativistic

factor, bN  the number of bending magnets in the lattice,

and xJ  the horizontal damping partition number.

If some dispersion is allowed in the straight sections,
then the minimum emittance is reduced by a factor three.
Analytic expressions can be given for the required values
of the beta and dispersion functions at the entrance to the
dipoles to achieve the minimum [3].  Using expression (1)
for a 3 GeV 24-cell lattice gives a theoretical minimum
emittance of 1.9 nm rad with zero dispersion in the
straights, or 0.64 nm rad if dispersion is allowed.

The drawback with reducing emittance by allowing
dispersion is that the dispersion at the location of the
chromatic sextupoles is reduced, so their strength needs to
be increased.  This increases the nonlinear effects in the
lattice, and reduces the dynamic aperture.  In principle, we
can achieve the target emittance for DIAMOND without
allowing dispersion in the straights.  In practice, however,
engineering constraints make it difficult to achieve the
optimum conditions for low emittance, and lead to the
necessity of allowing some dispersion to reach an
emittance of 3 nm rad.

Figure 1: Lattice functions in a six-fold symmetry version
of the DIAMOND storage ring lattice.

The beta functions and horizontal dispersion for a
typical six-fold symmetric 24-cell lattice are shown in
Figure 1.  The natural emittance of this lattice is 2.5 nm
rad, and some dispersion (0.06 m in the long straights,
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0.04 m in the short straights) has been allowed to achieve
this.

3  NONLINEAR PROPERTIES
The chromatic sextupoles are positioned in the

conventional places in the lattice.  Thus, in each cell, one
sextupole for correcting horizontal chromaticity is at the
centre of the achromat, where there is dispersion and a
large horizontal beta function.  Two sextupoles for
correcting vertical chromaticity are placed either side,
where the vertical beta function is large and the horizontal
beta function is small.  Families of harmonic sextupoles
can be positioned around the quadrupoles at either end of
the straight sections.  An advantage to allowing dispersion
in the straight sections is that the harmonic sextupoles
have a (weak) chromatic effect, and can be useful, for
example, for correcting higher order chromaticities.

As a design principle, we aim to reduce the nonlinear
effects of the sextupoles by adjusting the phase advance to
give conditions for cancellation of the higher order
geometric terms.  This has been applied, for example, in
the case of SPEAR 3 [4].  For a section of n  periods,
cancellation can be achieved by a phase advance of nπ2
between the sextupoles.  This can readily be seen by
representing the map for individual elements using Lie
operators.  Thus, we write the map for a sextupole as1
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The sextupole kicks may be ‘lumped’ at the end of the

map, by repeatedly inserting identity factors 1−RR , and
making use of the similarity transformation:
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We note that the effect of a phase advance on 3x , for
example, is just

                                                          
1 This is a map appropriate for a thin sextupole of unit strength.
The chromatic effect can easily be seen by replacing x  by

ηδ+x , where η  is the dispersion, and δ  the momentum

deviation, treated as a parameter.
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The sextupole kicks may be grouped into a single Lie
operator using the Baker-Campbell-Hausdorff formula
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and find that the third order terms in the generator cancel,
so we are left with

:: 4e fnRM =
where 4f  is a polynomial of lowest order four in the

phase space variables.  In the special case that the phase
advance is π  horizontally and π2  vertically between
two sextupoles (the –I transformer), there are no extra
terms generated by the Poisson bracket in the Baker-
Campbell-Hausdorff formula, and the map is completely
linearised.  Even if the map is not made completely linear,
cancellation of the lowest order nonlinear terms can give
significant improvement in the dynamic aperture.

A real lattice differs from the idealised model of the
above treatment in two important respects.  First, the
sextupoles all have length greater than zero, and second,
different families are interleaved.  The above treatment
generalises to include the case where the sextupoles are
interleaved, but for sextupoles of non-zero length, the
generator includes a second order momentum term.  This
prevents cancellation of the lowest order nonlinear terms.

The question we need to address is whether the
cancellation principle gives real benefit for the dynamic
aperture in practical cases.  To investigate this issue, we
constructed four lattices as follows:

•  The AT lattice has six-fold symmetry, full
chromatic correction and four families of harmonic
sextupoles.  The tune point is chosen to avoid
strong resonances, but without concern for
cancellation of higher order geometric terms.

•  The PI lattice has six-fold symmetry, only one
family of thin sextupoles, arranged to give a –I
transformer, and adjusted to give zero horizontal
chromaticity.

•  The PICC lattice has six-fold symmetry, full
chromatic correction, and a phase advance tuned to
give good geometric cancellation.  There are four
families of harmonic sextupoles.

•  The PIFF lattice is derived from the PICC lattice,
but with four-fold symmetry.  The tune is not
adjusted, thus there is incomplete geometric
cancellation.

We investigated the dynamics for each lattice by looking
at the horizontal phase space plots, comparing the results
of tracking in MAD 8.23, MERLIN 2 and MARYLIE 3.0
[5].  MERLIN 2, a C++ class library for beamline
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simulation2, is capable of fast symplectic tracking, and
allows us to write code specifically for dynamic aperture
calculations; we therefore used MERLIN 2 for
determining the dynamic aperture of each of the above
lattices.  Finally, we used MARYLIE 3.0 to investigate
the nonlinear terms in the generator.

(a) (b)

(c) (d)
 Figure 2:  Horizontal phase space plots  for (a) AT lattice,
(b) PI lattice, (c) PICC lattice and (d) PIFF lattice.  All
plots are on the same scale, with the horizontal axis from
–30 mm to +30 mm.  The observation point was at the
centre of the long straight, where xβ  is 10 m.

The horizontal phase space plots are shown in Figure 2.
It is clear that the dynamics in the PI lattice are very
regular up to large amplitude, indicating good cancellation
of the nonlinear terms in the generator; it should also be
remembered that this is the only lattice with no harmonic
sextupoles.  The AT and PIFF lattices show relatively
poor nonlinear cancellation.  The most practical lattice,
which combines full chromatic correction with reasonable
nonlinear properties, is the PICC lattice, which has been
designed using the geometric cancellation principles
outlined above.

The dynamic aperture of each of the four case-study
lattices is shown in Figure 3.  As expected, the PI lattice
has a very large dynamic aperture, and the horizontal
dynamic aperture of the PICC lattice is significantly
greater than either the AT or the PIFF lattices.  Vertically,
however, the PICC lattice is not so good, although the
reasons for this are not immediately clear.

The third order terms in the generators for the single-
turn maps are shown in Figure 4.  The geometric
cancellation in the PI and PICC lattices is evident; the
large terms in the PI lattice at the right hand side of the
plot are related to the vertical chromaticity, which of
course is not corrected in this lattice.
 

                                                          
2 Thanks to Nick Walker of DESY for making MERLIN 2
available.
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Figure 3:  Dynamic apertures of the case-study lattices.
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Figure 4:  Third order terms in the generators for the
single-turn maps for each of the four case-study lattices.

Although we do not present the results here, we also
find that the PICC lattice has good stability with respect to
momentum deviation, and the dynamic aperture is well
maintained in the presence of magnet field errors.

Further improvements may be possible.  For example,
detuning the lattice may lower the chromaticity, reducing
the required strengths of the chromatic sextupoles.  In
addition, we are looking at how the dynamic aperture
depends on higher order terms in the generator.

4 CONCLUSION
Our results suggest that the geometric cancellation

design principle can be successfully applied to improve
the dynamic aperture of strongly nonlinear lattices.
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