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Abstract

Many beam-dynamical phenomena are studied,
experimentally or computationally, by means of spectral
analysis of a time-series of values of a dynamical variable.
When the underlying dynamics is regular, the frequencies
appearing in the spectrum are integer combinations of a
small set of basic frequencies, e.g., the three tunes in the
case of single-particle orbital dynamics. For well-known
reasons, identification of the frequencies can be
ambiguous or subjective in practice.

We present an algorithm that overcomes these
difficulties by exploiting theoretical bounds on the
spectral power density to transform time series into sets of
labelled resonance lines.  In our examples, the time series
are orbits obtained by tracking single particles from many
initial conditions.

The method has been applied to off-momentum LHC
injection optics. This is a deterministic Hamiltonian
system. A second application, to orbits with strong
quantum fluctuations in LEP2, shows that it also works
well in a noisy, dissipative system. *

1  INTRODUCTION
Anyone who has looked at the tune spectrum of a stored
beam will appreciate that unambiguous identification of
the lines that appear is not always easy and may be partly
subjective. In this paper, we develop an algorithm to solve
this problem (in certain conditions) and apply it to particle
tracking data.

Our multiple resonance frequency identification
(MRFI) algorithm exploits bounds on the spectral power
density given by KAM theory [1,2] in an heuristic
manner, to return quantitative evaluations of the integer
combinations, so identifying the spectral lines.  A
preliminary version of the algorithm was used in [3];
related theoretical background and methods are discussed
in [4].

2  PRINCIPLES OF MRFI
The discrete Fourier transform maps a time-series of N
values of a dynamical variable onto a spectrum over a set
of frequencies ( )2

121 ,,,,0 �NN .  In the following, we

mainly consider the corresponding power spectrum.
The MRFI algorithm has two parts: first the spectrum

of a dynamical variable is transformed into a set of peaks
(frequencies, amplitudes and possibly widths); secondly,
each peak is assigned to one of the resonance frequencies.
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The appropriate peak-identification method depends on
the nature of the dynamical system.  Two illustrative cases
are treated below.

The second part of the algorithm is motivated by results
from KAM theory. When the underlying dynamics of a
system is quasi-periodic, it is well known that the
frequencies appearing in the spectrum are integer
combinations of a small set of basic frequencies. For
particle motion in an accelerator (3 degrees of freedom),
the basic frequencies (in “tune” units) are ( )321 ,, qqq=q ,
and peaks appear at the integer combinations qk. ,

( ) 3
321 ,, Zk ∈= kkk . KAM theory [1,2] suggests the

definition of a function:

( ) ( )}{1,}{min,,
4

qkqkkqk ⋅+−⋅−= fffc (1)

Here, the resonance order 
321 kkk ++=k  and }{x

denotes the fractional part of x. Moreover, the amplitudes
of the corresponding spectral components are bounded by

kλ−Me  for some constants 0, >λM .
Knowing the tune q, the function c is a measure of the

distance from the frequency of some peak, f, to the
resonance line labelled by k. This distance is minimised
over some ( ) { }rr ≤∈⊆ kZkK :3 .  (The inclusion, ⊆ ,
allows for the possible application of a selection rule
within the octahedral set of all resonances up to the order
r.)  The minimum gives the resonance *k most likely to
have generated the peak:

( ) ( ) ( )qkqqk
Kk

,,min,,,
)(

* fcfCfc
r∈

== (2)

For illustration, Figure 1 plots ( )q,fC , for

( )12.0,2.0,35.0=q  and ( ) { }2:2 3 ≤∈= kZkK , i.e., all

resonances up to the second order.
The first order resonances are visible as minima in
( )q,fC  at 0.35 0.2, ,12.0=f .  The comparatively

weaker influence of the second order resonances is
indicated by the nine much narrower troughs at the
positions of each resonance.   

3  LHC AT INJECTION
The LHC injection optics as a function of the central
beam momentum is well corrected for shifts in central
momentum of 002.0± [7]. Hence a scan of phase space
presents few peaks within the Fourier spectra of particles.
To produce a more complex phase space and show the
need for the b5 correctors, we consider the example of the
LHC optics V6.0 with b5 correctors switched off. In our

Proceedings of EPAC 2000, Vienna, Austria1018



example, particles were tracked in 4D using MAD8 [5]
for 1000=N  turns with a shift in central beam
momentum of +0.002. We illustrate the application of
MRFI to the spectrum of the normalised co-ordinate  xn.

Spectral peaks are first identified to accuracy 1/N  in
the Fourier spectra.  Since the system is deterministic,
their frequencies can be resolved more accurately with the
help of the NAFF method [6]; for quasi-periodic data the
intrinsic error is 4−∝ N  and the MRFI method then works
better.

Initially, single particle spectra were investigated. At
small-to-moderate amplitudes, the two tunes were taken to
be near the frequencies of highest peak occurred in the
Fourier spectra of the xn, yn co-ordinates; see Figure 2.

The frequency and amplitude of peaks found by the
algorithm match the original spectrum well. In a well-
corrected machine spectra would exhibit only one main
peak, with possibly another of very small amplitude.

To study the appearance and disappearance of
particular resonances along a line in phase space, a set of
particles with initial action m 1082.7 10−×=xI , and
increasing Iy, were tracked through the above-mentioned
optics. The peaks and associated k for each particle were
calculated as before.

At large initial Iy other peaks can be greater in
magnitude than the “tune” peak. To ensure that the correct
frequencies were attributed to the tunes, the values found
by the algorithm were compared with those evaluated for
the previous particle and the identity of the principal tune
peak retained by continuity as far as reasonably possible.

Figure 3 tracks all resonances up to the 6th order as the
initial action Iy co-ordinate is increased; the comparison
with the background spectral density shows that MRFI
provides a good quantitative representation of the main
features.

Particular resonances may also be tracked through a
plane in phase space. As before, it is necessary to track
the tunes from the smallest amplitude outwards whilst
performing MRFI on all particles that survived 1000 turns
within that plane of phase space.

 A set of MRFI plots, each depicting the amplitude of a
different k found, at all points in phase space, produce a

complete picture of the resonances affecting any region of
phase space tracked.

A combination of 3 MRFI plots, for k =(0,3,0), (2,1,0)
and (5,0,0) in the Ix-Iy plane is shown in Figure 4. Each
colour denotes one k. The shading of the plot represents
the amplitude of the resonant peak at that point in phase
space.  In this case, the fainter the shade on the plot the
smaller the amplitude of the resonance at that point
relative to the highest amplitude measured for that
particular resonance.
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Figure 1: The distance C to 1st and 2nd order resonances. 0.1 0.2 0.3 0.4 0.5
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Figure 2 (colour): The original spectrum (black), the
resulting peaks and associated k, coloured by their
resonance order for a single particle with initial actions

m 1082.7 10−×=xI , m 1027.1 7−×=yI .
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Figure 3  (colour): Tracking various resonances on the
background power spectra (lighter corresponds to higher
spectral density) as the action Iy, is varied. The resonances
are overlaid as labelled lines, coloured to indicate the
resonance order.
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Thus, MRFI provides an additional tool to map out the
features of the phase space of a Hamiltonian system.

4  LEP2
Single-particle motion in LEP2 is dominated by
synchrotron radiation whose quantum fluctuations
introduce a strong stochastic element [8,3].  The NAFF
algorithm is not applicable to this noisy and dissipative
system.  Nevertheless the orbit may contain information
about resonances present in the underlying Hamiltonian
system (that includes the non-dissipative part of the
radiation defining the closed orbit).  To apply MRFI we
need a different peak-finding algorithm.

Compared to the smooth spectra exhibited by the LHC
model, the power spectra of a particle’s displacement
from the closed orbit contains much more noise. The
application of a “moving average” such that every point is
replaced by the average position over some n surrounding
points reduces this level of noise and the true spectral
peaks emerge more clearly.

Our method works by sorting the points within the
spectrum in order of power density. The first point in this
list is taken to be the tip of the first peak; subsequent
points are tested in turn to see whether they lie within a
certain frequency range of the peak. If so they are taken to
be included within that peak; otherwise they are taken to
be the tips of new peaks. This continues until all data has
been sorted, leaving a list of peak objects, with specific
frequencies, heights and widths. These peaks may then be
analysed using the MRFI method described in Section 2.

This procedure has been applied to a number of
different tracking cases in LEP2.  As an example, Figure 5
shows the analysis of the Fourier spectrum of the
normalised yn co-ordinate of a particle started on the
closed orbit and tracked for 104 turns (some 200 damping
times).  The beam energy was 96 GeV, the phase
advances per cell were ( ) ( )°°µµ ,90102=, yx .  After
simulation of typical operational correction procedures,
the particular imperfect machine chosen had a vertical
emittance of nm 78.0=ε y and a well-corrected vertical
dispersion ( m 03.0 RMS =yD ).

The MRFI method was applied to find resonances up to
fifth order, using a 50 point moving average. The original
spectrum, its moving average, and the labelled resonance
lines produced by the algorithm are depicted in yellow,
blue and red respectively.

The labelled resonances are in good agreement with the
peaks in the moving average of the spectrum.  Compared
with the cases shown in [3] the absence of second-order
synchro-betatron sidebands is consistent with the small
vertical dispersion and relatively small vertical emittance.
MRFI remains applicable despite the loss in accuracy due
to the intrinsic nature of the system that requires the
different peak finding method and the moving average.

5  CONCLUSIONS
The multiple resonance frequency identification (MRFI)
method is a useful quantitative tool for detailed insight
into the resonance terms influencing particle motion
throughout phase space. Unlike some other methods, it is
applicable both to deterministic Hamiltonian systems such
as tracked orbits in a proton storage ring and to noisy
dissipative systems like electron orbits with quantum
fluctuations.  It could, of course, also be applied to other
problems inside and outside the accelerator physics
context.  The algorithms are implemented in Mathematica
packages, available from [9].
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Figure 4 (colour): The resonances (0,3,0), (2,1,0) and
(5,0,0) in yx II -  phase space (in purple, blue and green
respectively.)
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Figure 5 (colour): Analysis of a LEP2 positron spectrum
with quantum fluctuations.
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