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Abstract

The transition energy of a circular machine based on stan-
dard FODO lattices depends on the horizontal optics of
the cell and, therefore, on the average radius of the ma-
chine. This property imposes tight constraints on the de-
sign of isochronous machines that are frequently consid-
ered for applications such as electron and proton accumu-
lators or muon colliders. The price to be paid to satisfy
the isochronous condition is to have a dispersion function
with very large peak values along the machine circumfer-
ence. In this paper, a number of optical modules, which we
call wigglers, in analogy with the devices used in electron
machines, are presented that overcome such difficulties. A
careful analysis of their properties is carried out. Using
these new concepts, it is shown how to design isochronous
machines for which the machine radius and the transition
energy are independent of each other, while keeping the
value of the dispersion function under control.

1 GENERAL FRAMEWORK

An important parameter of a circular machine is its ra-
dius. In machines operating at transition, appropriate lat-
tices with low value of the dispersion function may be de-
signed using wigglers, which are modules having dipole
magnets with both positive and negative radius of curva-
ture. Wigglers can be applied to proton machines of large
radius and relatively low energy. Such a configuration is
similar to that of electron rings. The underlying physical
arguments are nevertheless different. In electron machines,
the large radius and the wigglers are needed because of the
effects of the synchrotron radiation. In proton machines,
the large radius is necessary, for instance, to reduce the
number of foil traversals to convert H− ions into protons
during the injection process. In that case, the wigglers af-
fect the orbit dispersion, thus allowing small beam pipe
aperture.

Having determined the overall machine geometry, two
options are available, depending on the value of the slip
factor

η =
∆T/T

∆p/p
= γ−2 − γ−2

tr (1)

where γ is the relativistic factor and γtr the γ-value at tran-
sition energy: (i) isochronous (or quasi-isochronous) ma-
chine, in which the revolution frequency has no, or a weak
dependence on momentum spread and |η| is zero or small;
(ii) non-isochronous machine, in which |η| is far from zero.

The transition energy of a machine based on a FODO

lattice is a function of the horizontal optical parameters
through the approximate relation [1]

γtr ≈ Qh

[
sinµh/2

µh/2

]
, (2)

where Qh, µh are the horizontal tune and the phase advance
per cell respectively. Furthermore, the expression for the
momentum compaction factor [1]

α = γ−2
tr =

∆C/C

∆p/p
=

1
C

∮
D(s)
ρ(s)

d s (3)

indicates that η is a function of D, Qh, the bending radius ρ
and the machine energy. This is a rather tight constraint in
case of a large isochronous machine working at low energy.

2 ORBIT DISPERSION AND
MOMENTUM COMPACTION

The constraint imposed by the choice of the bending radius
has a critical effect on the value of the horizontal dispersion
function D in the ring. Using Eq. (3) and assuming infinite
curvature radius outside the dipoles and a constant value
ρn in the nth bending magnet, the momentum compaction
factor α can be written as

α =
1
C

N∑
n=1

1
ρn

∫
nthbend

D(s)d s, (4)

where C stands for the ring circumference. Thus

α =
1
C

N∑
n=1

Ln

ρn
D̄n =

1
R̄

N∑
n=1

θn

2 π
D̄n (5)

R̄ = C/2 π being the mean radius of the machine, while
Ln, θn stand for the length and bending angle and D̄n is
the mean value of the dispersion function at the location of
the nth bending magnet, respectively. Since the sum of all
bending angles equals 2 π, the mean dispersion D̄0

b over all
bending magnets around the ring can be defined as

D̄0
b =

N∑
n=1

θn

2 π
=⇒ D̄0

b = α R̄. (6)

To lower the value of D̄0
b, a possible strategy consists in

introducing dipoles with a negative value of the radius of
curvature. If Mw extra bends of length Lw are inserted in
the lattice, Mw/2 with negative (positive) bending radius
−ρw (ρw), respectively, the expression for α reads

α =
D̄1

b

R̄w
+

Mwθw

4 πR̄w

(
D̄+

w − D̄−
w

)
(7)

Proceedings of EPAC 2000, Vienna, Austria1030



in which D̄+
w and D̄−

w stand for the mean dispersion over
the dipoles with positive and negative curvature respec-
tively, θw is the deflection angle produced by each addi-
tional dipole, and R̄w = Cw/2 π, where Cw = C +LwMw

represents the new value of the circumference length. As-
suming that D̄+

w = −D̄−
w = D̄1

b > 0, the mean dispersion
reads

D̄1
b =

αR̄w

1 +
Mwθw

2 π

. (8)

Hence D̄1
b is reduced according to

D̄1
b = D̄0

b

1 + ∆

1 + ∆
ρw

R̄

with ∆ =
Mwθw

2π
(9)

In the next section, optical modules (wigglers) based
on negative curvature bending magnets are presented. All
the optics computations have been carried out using the
BeamOptics program [2].

3 WIGGLER MODULES

To ease the matching with standard FODO lattices, the
starting point to build a wiggler module has been a
FODO-structure made of three identical cells of length
L. For varying the momentum compaction with respect
to the standard structure, alternating sign bending magnets
(which explains the name given to such a module in anal-
ogy to the wiggler magnets used in electron machines) are
interspersed with quadrupoles such that the overall bending
angle is zero. This property allows the insertion of wiggler
modules between arcs made of standard FODO cells. Two
variants of the wiggler have been studied, with different
numbers of free parameters.

3.1 Two-parameters wiggler module

Two free parameters can be used to determine the optical
properties of the wiggler: the strength of the quadrupoles
and the bending angle ψ of the dipoles. In the thin lens
version of the wiggler module, the bending dipoles are lo-
cated at L/4, 5L/4, 7L/4, 11L/4 from the first half defo-
cusing quadrupole, generating the sequence of bending an-
gles ψ,−ψ,−ψ, ψ. The module length 3L is considered as
a scaling parameter.

The Twiss parameters for the wiggler module are those
of a FODO cell of length L [2], while the dispersion func-
tion Din and its derivative D′

in at the entrance of the wig-
gler, along with α are given by the formulae

Din = −ψ
f [1 − 6(f/L)]
1 − 12(f/L)2

D′
in = 0

α = −ψ2

6
1 − 48(f/L)2

1 − 12(f/L)2
,

with f/L = 1/4 sin(µ/2), f being the focal length of the
quadrupole. Figure 1 shows the optical functions for a wig-
gler module. The sign of α can be easily determined as a

function of f/L. The dispersion function oscillates around
zero keeping the same sign as the deflection angle of the
dipoles.
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Figure 1: Optical functions for half a wiggler module with
two parameters (βh solid, βv dashed, Dh dotted line). In
this case ψ = 0.03 rad, f = 1.4, L = 5 m.

3.2 Four-parameters wiggler module

In this variant of the wiggler module, two additional
dipoles are used. The free parameters are the quadrupole
strength, the deflection angles of the two independent
dipoles, and the position of the additional bending mag-
nets. The dipoles are located at L(1 − χ)/4, 3L/4, (5 +
χ)L/4, (7− χ)L/4, 9L/4, (11+ χ)L/4 from the first half
defocusing quadrupole generating the following sequence
of bending angles ψ, λψ,−(λ + 1)ψ,−(λ + 1)ψ, λψ, ψ.
The additional free parameters are λ (a real quantity) and χ
(0 ≤ χ ≤ 1). Also in this case it is possible to find a closed
form expression for Din, D′

in and α, for instance

Din = −ψ2 f [1 − 2(3 + λ)(f/L)]
1 − 12(f/L)2

D′
in = 0

α = −ψ

6
[a(λ) − 3b(λ)(f/L)− 24c(λ)(f/L)2]

1 − 12(f/L)2

which holds for χ = 0. The coefficients are defined as
a(λ) = 1+λ+λ2, b(λ) = 2λ+λ2, and c(λ) = 2+2λ+λ2.

The analysis of the sign of α is more involved in this case
due to the presence of the parameters λ and χ. The detailed
computations can be found in Ref. [3].

4 DESIGN OF AN ISOCHRONOUS RING
USING WIGGLERS

The scenario studied at CERN for a Neutrino Factory [4]
is based on proton drivers to produce the intense proton
beam needed to generate neutrinos. Preference has been to
use the tunnel of the previous ISR whose mean radius is
150 m. An earlier scheme, considered proton drivers based
on an isochronous lattice [5]. The beam kinetic energy is
2 GeV so that η = 0 yields γtr = 3.132 and α = 0.102.
For an isochronous FODO lattice, the mean betatron func-
tion would be about 48 m (due to γtr ≈ Qh) and the mean
dispersion function D̄0

b would be approximately 15 m.
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An isochronous lattice based on a FODO cell inter-
spersed with wiggler modules would break the relationship
between γtr and the optical parameters, thus reducing the
excursion of the dispersion function.

A four-parameters wiggler module has been chosen with
λ = −0.464 and χ = 1. The value χ = 1 implies
that three bending magnets are combined-function (dipole-
quadrupole) magnets. Hence, the positions of the bend-
ing magnets are at 0, 3L/4, 3L/2, 9L/4, 3L from the first
element. To achieve dispersion matching at the junction
FODO/wiggler, the wiggler and FODO dipole bending an-
gles ψ and φ have to be related by an expression that, in the
thin lens approximation and for χ = 1, reads

ψ =
φ

2
[1 − 8(f/L)][1− 12(f/L)2]

1 − (4 + λ)(f/L) − 2(2 + λ)(f/L)2
. (10)

The machine consists of eight super-periods, each made
of one FODO cell 9.45 m long, followed by four wig-
glers 28.35 m long each. The ring circumference is
982.8 m. The bending angle of each FODO dipole
is φ = π/8 = 0.393 rad, yielding for the wig-
gler ψ = 0.287 rad and the remaining angles are
0.287,−0.133,−0.308,−0.133, 0.287 rad, respectively.
The integrated focusing strength is 0.401 m−1. Figure 2
shows the optical functions for a FODO cell and a wig-
gler module. The constraint imposed by the requirement
η = 0 yields a dispersion curve not symmetric with respect
to zero, oscillating in the wiggler between −8 m and 3 m,
the minimum being attained at the defocusing quadrupole
location. Figure 3 shows the overall ring geometry.

It is worth mentioning that an isochronous lattice with
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Figure 2: Optical functions for the isochronous, thin lens,
lattice with wigglers (βh solid, βv dashed, Dh dotted line).
A single FODO cell with half wiggler cell is shown.

similar values of the optical functions can be obtained with-
out using wigglers, but only negative radius of curvature
dipoles (see Ref. [5] for more details). In Fig. 4 the optical
functions for such a lattice are shown.

5 CONCLUSION AND OUTLOOK

A number of optical modules based on FODO cells and
alternating-sign bending magnets have been presented, and
their properties discussed in detail. They allow the tight
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Figure 3: Geometry of the isochronous, thin lens, FODO
lattice with wigglers. The inner and outer circles represent
the walls of the existing ISR tunnel

5 10 15 20 25 30

10

20

30

40

�, D �m�

Figure 4: Optical functions for half a super-period of
the isochronous, thick lens, lattice with negative curvature
dipoles (βh solid, βv dashed, Dh dotted line).

relationship between Qh, D, ρ, and machine energy to be
broken, thus enabling the design of large isochronous ma-
chines with reasonable values of the dispersion function.
As an example, a lattice for an isochronous proton driver
for the Neutrino Factory fitting the ISR tunnel has been pre-
sented.

The modules described in this paper allow the value of
γtr to be decreased (having α > 0). However, it is also
possible to design similar modules with α < 0 in order to
increase γtr [3].
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