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Abstract

The problem of the wake field generated by a relativistic
particle travelling in a long beam tube with rough surface
has been revisited by means of a standard theory based on
the hybrid modes excited in a periodically corrugated rect-
angular waveguide. Slow waves synchronous with the par-
ticle can be excited in the structure, producing wake fields
whose frequency and amplitude depend on the depth of the
corrugation. The main features of the longitudinal wake,
especially relevant for very short bunches, and its possi-
ble effect on proton bunches in the LHC beam screen with
ribbed surface are discussed.

1 INTRODUCTION AND MOTIVATIONS

The effect of surface roughness is a rather new subject,
arisen in the design of machines with extremely short
bunches of the order of tens of microns. In this case, in
fact, the surface roughness may be a source of wake fields
which might significantly increase the beam emittance and
the energy spread. Recently, a corrugation of the LHC
beam pipe has been proposed in order to reduce the reflec-
tivity of the walls, and therefore reduce the heat load on
the dipole beam screen due to photoelectrons accelerated
by the proton beam [1].

The low frequency coupling impedance due to the wall
surface roughness has been estimated in Ref. [2], while at
high frequency a surface wave synchronous with the beam
can be excited, and its interaction with the beam may lead
to beam degradation [3]. The roughness is replaced by a
thin dielectric layer at the waveguide walls, which supports
the surface wave.

In this paper we review the problem of the wake fields
produced by an ultra-relativistic charge travelling inside a
beam tube with a periodic corrugation making use of a stan-
dard theory based on the hybrid modes propagating in the
waveguide. After having described the model (sec. 2), we
first derive the dispersion relation for the fields and study
the frequency where the synchronous wave can be excited.
Then, through the reciprocity principle we get the ampli-
tude of the fields excited by the charge (sec. 3). From the
longitudinal fieldEz we calculate the coupling impedance
and the wake fields, using them to estimate the threshold
for the single bunch longitudinal instability (sec. 4).

2 MODEL

Let us consider the periodically corrugated rectangular
waveguide sketched in Fig. 1, witha (b) the dimension
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along the x-axis (y-axis). We model the wall roughness as
a series of periodic (with periodL) rectangular obstacles of
heighth and thicknesst. The beam travels on the z-axis;
we assumet � L, L� λ and neglect ohmic losses in the
material.
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Figure 1: Schematic view of the waveguide and notations
adopted.

Following [4], we consider a rectangular pipe with cor-
rugations in only two opposite sides. The periodicity of
the geometry alongz allows the use of Floquet’s theorem
which implies a field solution independent of the periodL
(obtained from a single cell).

Throughout the paper, we use (ξx, ξy, ξz) for the propa-
gation constants of the field in a rough waveguide, (kx, ky,
kz) for a smooth waveguide, and (Kx, Ky) for the wave
number of the field inside the corrugation.

3 THEORY

To find the longitudinal wake function per unit length we
follow the method applied in [5], that we summarise for
reader’s convenience. First, the homogeneous problem is
solved, thus finding the modes propagating in the corru-
gated waveguide; then, applying the reciprocity principle,
we derive the fields generated by a relativistic point charge.

Having assumedL� λ, the fields inside the corrugation
do not depend on the z variable (that isKz = 0); since the
corrugation is only on the two faces normal to the y-axis,
Kx = kx = nπ/a (with n = 1, 2, . . . ). The fields in the in-
ternal region of the waveguide can be derived from a mag-
netic Hertz potential directed along the x-axis, such that
Ez is non vanishing on the beam axis. A y-directed Hertz
potential would produce anEx vanishing on the corruga-
tion, because of continuity over the boundary, just like in
a smooth conducting rectangular waveguide. On the con-
trary, a z-directed Hertz potential would not give all the
possible field configurations. Imposing the continuity of
Ez andHx over the boundary, we get (c is the speed of
light in vacuum):

k2xn + ξ2y + ξ2z = (ω/c)2 , (1)

Kyn tan (Kynh) = ξy cot (ξyb/2) . (2)
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Eq. (2) is usually referred to as dispersion equation; for

each value ofKyn =
√

(ω/c)2 − k2xn, it gives an infinite
number of solutions.

For finite values ofh, solving numerically Eq. (2) and
plugging the obtained value forξy in Eq. (1), we get the
propagation constantξz; its behaviour with the frequency is
usually called dispersion diagram. The result for a simpler
square waveguide of sidea is shown in Fig. 2 (h/a=0.1 and
h/a=0.01). The dispersion curve of a smooth waveguide at
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Figure 2: Dispersion diagram for a square waveguide of
sidea with corrugation on two opposite faces. The solid
line (a) is obtained from Eq. (2), forh/a = 0.1, while the
line (b) is forh/a = 0.01. The dashed one corresponds to
the unperturbedTM11 mode of the smooth waveguide and
the dot-dashed line rappresents a relativistic beam.

very high frequencies tends to the propagation constant of
a relativistic beamξz = ω/c = 2π/λ (dot-dashed line), but
it never crosses it. However, due to the corrugation, there
may be a crossing of the curves at particular frequencies
where the waveguide mode and the beam are synchronous
and a coherent exchange of energy is then possible. It is
clear from Fig 2 that the smaller ish, the higher is the cross-
ing frequency. If the crossing frequency is inside the bunch
spectrum, characterised by the typical frequencyc/2πσ (σ
being the r.m.s. bunch length), the coupling with this syn-
chronous (surface) mode could be quite efficient, result-
ing in beam degradation. In ultra-short bunch machines,
this may become an important effect. On the contrary,
in an LHC-like geometry (a = 3.6 cm, h = 30 µm and
σ ≈ 7 cm) the bunch spectrum extends approximately up
to a/σ ≈ 0.5, i.e. well below the crossing pointa/λ ≈ 10.
It can be shown [5] that forh � λ, a and high energy
particles (γ → ∞) the crossing frequencies are:

fn =
c

2π

√
k2xn +

kxn

h
coth

(
kxn
b

2

)
. (3)

For very smallh, the second term in the square root dom-
inates resulting in a behaviour∝ 1/

√
h, analogous to the

case of a pipe covered with a dielectric layer of thickness
h [6].

The modes propagating in the corrugated waveguide are
called hybrid modes [4], since they are a superposition of

the standard TE and TM modes (along the z-axis). The hy-
brid modes in general do not satisfy an orthogonality con-
dition; physically this means that they are coupled to each
other. Since the coupling coefficients are proportional to
the height of the corrugationh, for very small depths of the
corrugation the modes are practically decoupled.

Once the homogeneous problem is solved, the modes
of the structure are known, the field generated by a point
charge can be found by means of the Lorentz reciprocity
principle [5]; for an infinitely long structure, the field has
a resonant behaviour. The (specific) longitudinal coupling
impedance is proportional toEz on the beam axis [7]:

∂Z (ω)
∂z

=4π2 Z0
h

a

1
ab

tanh
(
π

2
b

a

)
×

δ (ω/c − ξz1) + δ (ω/c + ξz1)
sinh (πb/a) / (πb/a) − 1

,

(4)

whereδ is the Dirac function,Z0 is the free-space charac-
teristic impedance andξz1 is obtained by solving Eqs. (2)
for n = 1. It is straightforward now to get the wake func-
tion for unit length and for a point charge [7], i.e.

∂w(τ)
∂z

=
H(τ)
π

∫ ∞

−∞

∂Z(ω)
∂z

ejωτdω, (5)

whereτ is the time distance of the trailing charge from the
leading one andH(τ) is the Heaviside function; eventually
we get:

∂w(τ)
∂z

= w0 (a, b, h) cos
(
2πf1 τ

)
, (6)

where

w0 (a, b, h) = 8π
Z0 c

ab

h

a

tanh (πb/2a)
sinh (πb/a) / (πb/a) − 1

. (7)

To get the wake function for a bunch, one has to perform
the convolution of Eq. (6) with the current density. For
instance, the wake function is

∂W (τ)
∂z

= w0 (a, b, h)
∫ ∞

0

e−(t−τ)2/2σ2

√
2πσ

cos
(
2πf1 t

)
dt

(8)

for a gaussian bunch of r.m.s bunch lengthσ and this inte-
gral can not be done analytically.

The amplitudew0 (a, b, h) of the sinusoidal function for
an LHC-like geometry (a = 3.6 cm, b = 4.3 cm and
h = 30 µm) is w0 	 0.3 V pC−1 m−1 and the cross-
ing frequencyf1 is 83 GHz (andh� λ, as assumed). The
possible effect of such a wake on the single bunch longitu-
dinal stability is discussed in the next section.

4 SINGLE BUNCH LONGITUDINAL
INSTABILITY

In the previous section we have shown that the wake field
due to the synchronous mode has a resonant behaviour and
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the quality factorQ of such a resonance is infinite (since
an infinite interaction length is assumed). This is clearly an
approximation and, to evaluate the threshold of the longi-
tudinal instability, we will consider the standard resonator
model [9] with a shunt resistanceRs given by

Rs =
Qw0L0

2πf1
= 1.6 104Q Ω (9)

and a finiteQ. The LHC parameters we will use are given
in Table 1.

Table 1: LHC parameter list
mom. compaction αc 3.47 10−4

machine length (Km) Lo 26.66
rev. freq. (Hz) fo 11103

energy (GeV) Eo 7 103 (top) 450 (inj.)
bunch length (mm) σ 75 (top) 130 (inj.)
energy spread(10−4) σεo 1.1 (top) 4.7 (inj.)

The impedance at frequencies well below the resonator
frequency (for example at the frequencyf c = c/2πσ asso-
ciated with the bunch length) is inductive and such that

|Z/n| ≈ Rs

Q

fo

f1
≈ 2 mΩ, (10)

i.e. two order of magnitude smaller than the LHC
impedance budget (n is the harmonic numbern = f/f o).
At the resonator frequencyf1, the impedance|Z/n| is real
and equal to that of Eq. (10) multiplied by theQ factor.

An estimate of the longitudinal instability threshold (for
mode numbers of the order off1/fc = 130) can be done by
using the Boussard criterion [8], derived from the coasting
beam theory, which we write here in the form

Nth =
(2π)(3/2) (E0/e) αc σ σ

2
ε0

c e |Z/n| , (11)

with E0 the nominal energy,e the electron charge,αc the
momentum compaction,σε0 the energy spread, andZ the
coupling impedance at a frequency corresponding to har-
monic numbern. For the top energy of 7 TeV we get

Nth =
7.22 × 1011∣∣∣Z/n

Ω

∣∣∣ (12)

protons per bunch, while in the case of injection energy
(450 GeV) the threshold is a factor 2 higher.

In the most pessimistic case in which the perturbation
of the unstable oscillation mode has the same resonant fre-
quency of the wakef1, we obtain a threshold of

Nth =
3.67 × 1014

Q
(13)

protons per bunch, depending on the value ofQ. Quality
factorsQ higher than2 × 103 (equivalent to interaction

lengths longer than 6 m) are therefore dangerous for the
LHC whose ultimate intensity is1.6 × 1011 protons per
bunch.

On one hand, a more accurate stability analysis includ-
ing azimuthal [9] and radial [10] mode coupling would then
be in order. On the other hand several mechanisms, not
included in the previous derivation, will limit the quality
factorQ, including ohmic losses and geometric imperfec-
tions. In particular, pumping slots in the LHC beam screen
induce mixing of the modes propagating in the beam pipe
and attenuation of the synchronous surface wave, presum-
ably after a distance of few meters [11].

5 CONCLUSION

In this paper we have derived the longitudinal wakes due
to a periodic corrugation in a rectangular beam pipe, in-
teresting for the design of the LHC beam screen. For a
point charge, the amplitude of the sinusoidal wake function
is proportional to the corrugation depthh and the oscilla-
tion frequency is proportional to1/

√
h. For h → 0 the

frequency of the wake function goes to infinity, while its
amplitude vanishes. A possible way to evaluate the single
bunch instability threshold has been proposed, by means
of the Boussard criterion; the resulting threshold depends
on theQ value of the synchronous field, that has still to be
evaluated.
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