HEAD-TAIL DAMPING AND IMPEDANCE AT LEP
A.-S. Mlller, CERN and Mainz University, J. Wenninger, F. Zimmermann, CERN

Abstract where, for a Gaussian beart (w,) = exp(—w2o?/c?),

— —_ 1 —_ / —_
Head-tail damping rate and coherent tune shift depend o‘foﬂ_ g@;o Twp andw; = gwﬁ,/ofc with§ = Q'/@s =
chromaticity and transverse wake field. Using this depen<, / 7 denoting the chromaticity and. the momentum

dence, the transverse impedance of LEP can be estimag@inpaction factor. The chromaticity enters in eq. (3) only
from coherently damped betatron oscillations measured §trough the frequency shift..
different chromaticities and beam currents. We comparks an example, fof)’ = Q¢ = 10, o = 1.8 x 1074

measurements and analytical results. and@s . = 90, the frequency shiftigy = we/(27) = 0.1
GHz. For an rms bunch length 5 mm, the beam spectrum
1 INTRODUCTION extends roughly up to about 10 GHz.

i i The tune shift with bunch current is given by the real part
In LEP the three most important impedance sources agg ihe complex frequency shifte, AQs /AT, o Re(Q —
the copper and superconducting RF cavities and shielded ) . Im(Z+ )err, and the damping rate by the imaginary
bellows. The cavity impedances are known from ear"eﬁartl/r & —Im(Q — ws) o« Re(Zi)ex. The machine
measurements [1]: The horizontal impedante'@ of 86 jnpedance can bereconstructed [6] from measurements of
Cu cavities is about 1.0 M/m and the resonant frequency AQs. andforl/r as a function oy’ For long bunches
2 GHz. The impedance of the sc. cavities is taken to bgr > ¢/o., we haveAQs /AT, « Z,/Q o R,/ (w,Q) ’
0.6 MQ/m, and their resonant frequency is 0.7 GHz. Theygy /7 o 'wa/Qz 5 R, /(w2Q%). However, in our ex-

hqrizontal impedanc@x of the bgllovys is more uncer- ample, the bunch is not long enough to use this approxima-
tain [1]. Their resonant frequency is high, about 12 GHz. 4,

In 1997, damped coherent betatron oscillations in LEP
were recorded turn-by-turn for various bunch currents and

chromaticities. Betatron tune and the exponential damping = 15 LT T‘ml “‘
for each data set can be obtained from a fit to a damped an-g 1Y o T;mz;
harmonic oscillation [2, 3]. We will use these results to in-
fer information on the effective impedance of the bellows.

T=3.75/0,

Re Z (M

2 |IMPEDANCE MODELLING

The transverse impedance is commonly described by sev-
eral broadband resonators of the form

4 Ry
“1—|—iQ(‘ju—r—w”—r)

Zi (w) =

1)

wherew, is the angular resonance frequency, dtdhas

: : : . ; £
dimensions of2m=2. The horizontal impedancg, is re- S
lated toR by R, = Z,w, /c. The complex frequency shift § 0 I S
for thel = 0 head-tail mode of a Gaussian bunch is [4] E i
Nec? -1 .»‘i/// /alternative model I
Q—wp = —i (7). (2)
4ﬁ(E/6)T0wﬁUZ /;/,/ . T=084/0,
wherews; = Qswy is the angular betatron frequency (in- 2y e T
cluding integer part)¢) s the betatron tuney, the angular Ji == T=375 0
revolution frequency)V, the bunch populatior, the elec- gl
tron charge¢ the speed of lighty, the rms bunch length, 0 5 120 15 20 25 30 35 40 45 50
w (107 s™)

and~ the beam energy. The frequency shift is proportional

to the effective impedance [5] defined by Figure 1: Real (top) and imaginary (bottom) compo-

nent oftransverse LEP impedances as a function ofan-
S Zi (wp)ho(wy — we) gular frequencyw, comparing standard and improved

1 _ p=—00
(27 et = S holwp — ) 3 broadband resonator model.
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Recently, an alternative impedance model has been pro-

posed [7]: s Ey=45625Gev |
1 o ZCL F
Zi (W) = NSPE (4) 027 | ]
L Q
Unlike the usual broadband resonator, this impedance al- | oiissoon

410.79 £ 0.04

lows for the correct behaviour at high frequencies (diffrac- et oos
tion model [4]). It has two free parameters for each res- %% [ 7 sesxo0n
onator (., 7", the same number as the conventional model, o

if, for the later, we choos€ equal to 1 as we will assume 50 100 150 200 250 300 350 400 450 500
in the following. Identifying the frequency where the real L,/ A
part of the impedance is maximum,,.x ~ 0.73/T, with Figure 3: Horizontal betatron tune as a function of

the corresponding frequency in the broadband resonatorbunch current for various chromaticities measured at
model, wyax ~ 0.87w,, and the maximum impedance a beam energy of 45.6 GeV. The revolution period is
value itself with7,., the parameters of the two models can 88.9us.

be related vidl’ ~ 0.84/w, and L ~ 5ReZ,/(3w,) [7].

Alternatively, if we identify the frequency where the imag-

inary part of the impedance becomes zero with the resona&[lsed on the study of 1000-turn measurements after a sin-

fr ncyw,, W i~ 1.72/w,. o .
equency.,, we obta 7 / i le excitation. Damping rate and betatron tune can be ex-
Figure 1 shows the real and imaginary components of t . . e
racted from a fit to a damped anharmonic oscillation tak-

transverse impedance calculated for the broadband res-". . : ) .
. . 1ng into account the horizontal detuning with amplitude.
onator model and several calculations for the alternati

v : o ;
model with different identification of parametefsand . Bgtalls on the f.'ttmg procedure can be fpunq n .[2’ 3.
- L . Since the damping of coherent bunch oscillations in LEP

(see discussion in section 4).

is composed of radiation and head-tail damping, we inter-
pret the linear increase with bunch current in fig. 2 as due
3 MEASUREMENTS to head-tail damping and identify the offset for zero current

All measurements discussed here were performed for t{th synchrotron radiation damping. The head-tail damp-

90/60 optics at 45.625 GeV, with a momentum compactiof'd rates normalised by the bunch current obtained from
factora. = 1.86 x 10~* (measured and computed) andinear fits to data shown in fig. 2 are depicted in fig. 4 as a

betatron tunes of)s., ~ 90.28 andQs, ~ 76.19. The 'unctionofQ’. .

rms bunch length, inferred from synchrotron tune and prel"® machine broadband impedance does not only cause
vious streak-camera calibration measurements, was ab8@MPing, but it also gives rise to a tune shift with current.

5 mm. At the time the data were taken, 86 Cu cavities anfeasurements of this coherent tune shift for various chro-
240 s.c. cavities were installed in LEP. maticities are shown in fig. 3 as a function of bunch current,

Figure 2 shows the damping rates of betatron oscillatior'd the fitted slopes are summarised as a function of chro-
for several currents and chromaticities. The analysis f&ticity infig. 5.

4 RESULTS

We assume that the transverse impedance is just given by
1 the sum of the three contributions discussed above. Also,
] for simplicity, we consider the impedance parameters for
the cavities as known. From a fit of the measured head-
tail damping rates to one of the two impedance models, we
may then infer the horizontal impedance of the elliptical
bellows. Since the measured head-tail damping rates do
not cross zero af)’ = 0 (see fig. 4), we include a constant
offsetinQ’.
A two parameter fit for the conventional resonator model
with a 2 of 2.3 per degree of freedom yields an offset
(‘)5‘01(‘)01;0 2(‘)0 2;03(‘)03;04(‘)0 ‘z‘;;(‘)”f;oo Qy =152+ 0.22 an.d a bellows impedancé, = 0.31 :I:

uncn | HA 0.02 M&/m, which is exactly equal to half the vertical
Figure 2: Damping rate as function of bunch current impedanceZ, quoted in Ref. [1]. The value of the latter,
for various chromaticities measured at a beam energy Z, ~ 0.6 M{2/m, was deduced from vertical coherent tune
of45.6 GeV[3]. The revolution period is 88;5. shift measurements, and a two times smaller number for the
horizontal bellows impedance was expected to reflect the

- -
[y Q 10°%(1y I Tpe) ™

W 14.13+0.04 1.793 £0.157
¥ 10.79+0.04 1.709 £0.109
A 7.79£0.04 1.639 +£0.087
® 568+0.04 1.595+0.075
A 4.09+0.04 1.622 +£0.046
O 2.68+0.04

1.570+0.075

E, = 45.625 GeV
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vacuum-chamber aspect ratio [1]. A two-parameter fit to

the improved broadband model gives about the same values & alternative model.

of x* and chromaticity offset, but the resulting impedance % i o 1232;3
depends strongly on the exact relation betwg&eandw, = —ome TELTS 0
which we assume. For example, withes 0.84 /w, (equat- 2 b

. . . . a fFEee=== T SSIITIT tIe STty
ing the frequencies at the maximum real impedance) forall o, [ ____ '~ [
three resonating components we find a bellow impedance |

equal to zeroZ, = 0.00 & 0.02 MQ2/m, andx? = 13.3 | broadband resonator model fit

per degree of freedom; with' ~ 1.72/w, (equating the |

zero crossing of the imaginary impedance) we haye— 6
0.23 £ 0.02 MQ/m andx? a 2.3. In order to obtain the 0 2 4 6 8 10 12 14 16 18 20

same impedancg, ~ 0.3 MQ/m as for the conventional

Q
model, we must choosE ~ 2.1 /o). Figure 5: Horizontal tune shift with bunch current (in

1A) as function of chromaticity for a beam energy of
45.6 GeV [3]. The solid line represents a straight
line bt to the data, the dotted and dashed lines de-
] pict the tune shifts as calculated using the two types
E of impedance models.
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verse impedance, we fitted the experimental data to a con-
E ventional broadband resonator model and to an alterna-
E tive model with correct high-frequency behaviour, in ei-

=
(&
T

norm. damping rate (10‘2/turn/mA)
[ N
T T

05 [ - E ther case taking into account the contributions from bel-
o T lows, s.c. cavities and Copper cavities. The two impedance
0 2 4 6 8 10 12 14 16 18 20 models describe the data equally well if the parameters in

Q the alternative model are properly chosen. The fit to the

Figure 4: Head-tail damping rate normalised to the conventional model yields a horizontal bellows impedance
bunch current as function of measured chromaticity for which is a factor 2 smaller than the computed vertical
a beam energy of 45.6 GeV [3]. The solid and dashed impedance. This difference was expected and reflects the
lines represent broadband and alternative impedancevacuum-chamber aspect ratio at the bellows. A constant
model respectively btted to experimental data. offset in the horizontal chromaticity 2@’ ~ 1.5 or a cor-
responding offset in the normalised damping rate remains

_ ) ) unexplained.
Figure 4 compares the damping rates predicted by the two

models,' including the fit'ted contributions from the bello_ws ACKNOWL EDGEMENTS
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