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Abstract

Two simplified models are presented in this paper in order
to estimate the contribution of fast kicker magnets to the
longitudinal impedance of synchotrons. The first model is
cylindrically symmetric with ferrite surrounding the beam
aperture. The beam aperture is rectangular in the second
model. Two opposing sides consist of ferrite and the others
consist of perfect conductors. The analytical expressions
of the longitudinal impedance for the two models are first
derived. Subsequently, a numerical comparison between
these expressions and simulation results obtained with the
code HFSS are presented.

1 INTRODUCTION

Two very simplified kicker models are presented in this pa-
per to estimate their contribution to the longitudinal cou-
pling impedance. Analytical calculations for these models
are given in [1]. In this paper, new simulation method with
current sources [2] using HFSS [3] is described, and com-
pared with the analytical calculations. Also, a technique to
avoid the integration on the axis for the calculation of the
longitudinal coupling impedance is shown.

2 MODEL 1

Figure 1: Model 1 (left): cross section for the coaxial ge-
ometry, and Model 2 (right): cross section for the modified,
rectangular geometry. The beam moves along the z axis
(out of the page).

Model 1 (Fig. 1, left) is a metal tube with inner radius d,
which is homogeneously filled with a hollow ferrite cylin-
der with outer radius d and inner radius b. The beam is in
the centre at r = 0. The length in axial direction is infinite
for analytical calculations.

2.1 Analytical Calculation

By using the field matching technique, the longitudinal
coupling impedance per unit lengthZ/L is derived as [1, 4]
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where εr, µr, Z0, k, kr, H are the relative permittivity, the
relative permeability, impedance in vacuum (Z0 = cµ0),
ω/c, k

√
εrµr − 1, and the Hankel function, respectively.

The solid lines in Fig. 2 show the result, where b = 20 mm,
d = 80 mm, and the length of the ferrite is lF = 1.658 m,
to simulate the SPS MKE kicker [5]. From the figure we
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Figure 2: Analytical calculations and simulations of the
longitudinal coupling impedance of the SPS MKE kicker.
The solid and the dotted lines show the analytical results
for Model 1 and 2, respectively. The circle and “×” sym-
bols show the HFSS simulation results for Model 1 and 2,
respectively. The dashed lines show the measured results
by the coaxial wire method [5].

can see that Model 1 has a much larger real part than the
measurement (dashed line) at low frequencies. This is be-
cause we did not take into account the effect of the hot
and cold conductors, which modify the distribution of the
TEM-like electromagnetic field of the beam. We will see
this with Model 2.
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2.2 Simulation by HFSS

The well known coaxial wire method [6] for impedance
measurement is prone to the simulation by HFSS. However,
some care is required to use this method.

For our kicker case, the TEM-like waves attenuate
quickly along the wire because of the high losses in the
ferrite. Whereas with the real beam, the TEM-like waves
do not attenuate along the beam direction because the beam
feeds the energy to the waves. Therefore, the approximate
“log” formulae [5] is used to take into account this effect.
However, if there is a ‘by-pass’ [1], some portion of the
electromagnetic field will go through, and the calculated
coupling impedance would be different.

Nevertheless, another way to simulate the beam [2] in
HFSS is to put current sources on the beam axis according
to

I(t) = I0 exp(jω(t− z/c)). (2)

The whole procedure is as follows:

1. In 3D Modeller, define planes around the axis.

2. In Boundary/Source Manager, assign current source
boundary conditions on the planes.

3. Solve the problem.

4. In 3D Post Processor, assign magnitudes and phases of
the current sources by using ‘Edit Source’ command
and then plot the fields.

Since a variable current source (Eq. (2)) cannot be as-
signed in HFSS, we set many constant current sources of
2 cm length on the axis. The phase difference between ad-
jacent current sources is 2 cm / λ×360◦. A problem of this
method is that charges are created and annihilated at both
ends of the current source. This is inconsistent with na-
ture. This drawback may be neglected if the length of each
source is small enough as compared to the wavelength.

Figure 3 shows the geometry used in the simulation.
Since it has axial symmetry, we used a 1/36 model (i.e.

Figure 3: Model 1 geometry used for HFSS: only 1/36 of
the structure is simulated. The inner and outer radii of the
ferrite are 20 mm and 80 mm, respectively. The axial length
is 1 m. The current sources are on the axis.

10◦ sector model). The length along beam direction is 1 m.
Figure 4 shows Ez along r = 20 mm line at 600 MHz.

Since Ez is independent of the transverse coordinate in the
vacuum for Model 1, we can use this value to calculate the
longitudinal coupling impedance. It is better to use the field
far from the axis for the impedance calculation, in order to
avoid noise by the current sources on the axis.
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Figure 4: Ez along r = 20 mm line corresponding to
Model 1 at 600 MHz by HFSS simulation. Solid and dotted
lines show the real and imaginary parts, respectively.

From the figure, one can see Ez � −2000+ j2000 V/m.
Thus the coupling impedance is Z = −lFEz/I0 =
(3300 − j3300) Ω/m at 600 MHz. The circle symbols in
Fig 2 show the results; they agree well with the analytical
calculation.

3 MODEL 2

Compared with the measurement, Model 1 gives a much
larger coupling impedance at low frequencies, as shown in
Fig. 2. This is because we neglected the metal electrode
plates at the two sides. The electromagnetic field should
be strongly deformed at low frequencies, so that most of
the image current goes through the electrode plates. This
lowers the impedance.

Electrodes were added at both sides in the Model 2
(Fig. 1, right), and the ferrite block were deformed in or-
der to calculate the impedance easily. Model 2 is a metal
tube with square cross section (|x| < a, |y| < b) and two
ferrite slabs (|x| < a, b < |y| < d). The image current can
find metallic by-passes left and right (|x| > a). The length
in axial direction is infinite for analytical calculations.

3.1 Analytical Calculation

By using a field matching technique, we obtain the longi-
tudinal coupling impedance per unit length Z/L as [1]
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where wave numbers kxn and kyn are (2n+ 1)π/(2a) and√
(εrµr − 1)k2 − k2

xn, respectively. The parameters sh,
ch, tn, and ct are sinh(kxnb), cosh(kxnb), tan(kyn(b−d)),
and cot(kyn(b − d)), respectively.

The dotted lines in Fig. 2 show the result. The measure-
ments agree well with the calculation, except for the imag-
inary part above 500 MHz. Figure 5 shows the transverse
magnetic field vectors. At 200 MHz (left plot), the mag-
netic field is modified so that most of the image current
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Figure 5: Transverse magnetic field vectors at 200 MHz
(left) and 800 MHz (right).

goes through the metal plates (|x| = a). As the frequency
increases (right plot), some amount of field penetrates into
the ferrite blocks, which induces energy loss.

3.2 HFSS Simulation

The geometry is shown in Fig. 6. Since it is symmetric with

Figure 6: Model 2 geometry used for HFSS.

respect to the x = 0 and y = 0 planes, a 1/4 model is used
in the simulation. Much more volume is needed to simulate
Model 2 than for the Model 1. The number of mesh points,
due to the computer resource problem at CERN should not
exceed about 50000; with this volume, we can achieve a
minimum mesh size (with ‘Manual mesh’ option in HFSS)
of 10 mm which is insufficient. Therefore the actual length
of the model was reduced from 1 m to 50 cm.

Since Model 2 does not have axial symmetry, Ez de-
pends on the transverse coordinates. In this case, we can
use the following technique to calculate impedance. From
Maxwell’s equations, we obtain
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By averaging the above equation with φ, we obtain
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where 〈〉φ =
∫
dφ/2π. Thus the following integral from

(r = 0, z = zmin) to (r = 0, z = zmax) does not depend
on the path:
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where L is an arbitrary path in vacuum region connecting
(r = 0, z = zmin) and (r = 0, z = zmax). In our
case, since the electromagnetic fields are proportional to
exp(−jkz), integration can be done easily and we obtain
the coupling impedance Z as

Z(ω) = − lF
2πI0

∫ 2π

0

dφEz(r, φ, z) exp(jkz). (7)

We used this equation to calculate the coupling impedance.
The result is shown as “×” symbols in Fig. 2, which agree
with the analytical results (dotted lines).

4 CONCLUSIONS

A new impedance calculation method using HFSS is pre-
sented. The result agrees with the analytical value. The
metal plates in Model 2 change the impedance to lower
value at low frequencies. Model 2 gives good estimate of
the broad-band longitudinal coupling impedance at least at
low frequencies.

ACKNOWLEDGMENTS

I would like to thank D. Brandt, F. Ruggiero, L. Vos, A.
Mostacci, F. Caspers, and M. D’yachkov for valuable dis-
cussions, E. Jensen and T. M. Lopez for information of An-
soft HFSS.

REFERENCES

[1] H. Tsutsui, “Some Simplified Models of Ferrite Kicker
Magnet for Calculation of Longitudinal Coupling
Impedance”, CERN-SL-2000-004 AP (2000).

[2] L. S. Walling, private communication.

[3] See World Wide Web address http://www.ansoft.com

[4] W. Hartung et al., “Assessment of the Coupling Impedance
of Beam Line Higher-Order Mode Loads”, in Proceedings
of the Workshop on Microwave-Absorbing Materials for
Accelerators (1993).

[5] F. Caspers et al., “Impedance Measurement of the SPS MKE
Kicker by means of the Coaxial Wire Method”, PS/RF/Note
2000-004 (2000).

[6] F. Caspers, “SPS Kicker Impedance Measurement and Sim-
ulation”, Proceedings of the 10th Chamonix Workshop
on LEP-SPS Performance, CERN-SL-2000-007 DI, 85-93
(2000).

Proceedings of EPAC 2000, Vienna, Austria1446


