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Abstract

The transverse coherent oscillations of the two colliding
LHC proton beams are studied via multi-particle tracking,
using the beam-beam force of a Gaussian distribution with
variable barycenters and rms sizes. In addition to head-
on collisions, our simulation optionally includes the effect
of long-range collisions and an external impedance. Sim-
ulation results are the coherent and incoherent oscillation
frequencies, the emittance growth of either beam, and ev-
idence for the existence or absence of Landau damping.
We find that with equal beam sizes and equal tunes Landau
damping is lost for current ratios larger than 60%. How-
ever, Landau damping of the coherent dipole oscillations
can be restored by separating the tunes, provided the exter-
nal impedance is sufficiently small.

1 MODEL

We simulate the collision of two strong proton beams.
Our system of normalized variables is x = X/σoX ,
vx = βX ′/σoX , y = Y/σoY , vy = βY ′/σoY where
σoX = σoY = σ are the nominal horizontal and vertical
rms sizes, and β the beta function at the interaction point.
The prime denotes the derivative with respect to longitudi-
nal position s. Each of the beams is represented by a set of
N macroparticles, whose trajectories are followed over n
turns, assuming linear betatron motion (rotation with tune
Qx on the horizontal plane (x, vx) and tune Qy on the ver-
tical plane (y, vy)) from one IP to the next. At the IP, each
particle in the bunch experiences a deflection in the field of
the counter-rotating beam with barycentres at (x̄ (i), ȳ(i))
and squared transverse sizes M
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assuming that the opposing beam has a Gaussian shape.
Thus, for M
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(i)
xx ,M

(i)
yy )

with rp the classical proton radius, N
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bunch population, γ the relativistic Lorentz fac-
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where W denotes the complex error function (if
M

(i)
yy > M

(i)
xx we substitute x by y on both sides of

the two equations, and vice versa). The vertical beam-
beam force is described by the real part of the same
expression. In these maps the superindex (i) indicates
variables of the counter-rotating beam.

At the LHC, there are about 16 parasitic encoun-
ters on each side of an IP, with a minimum transverse
separation of Lx = 7.5 and Ly = 7.5 (in units of
σx). The long-range beam-beam kick is then ∆vx(n) =
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where

R2 = (x − x(i) − Lx)2 + (y − y(i))2. An equivalent ex-
pression will be used for vertical long range collisions with
separation Ly. In the simulations we assume the following
typical LHC parameters: fractional betatron tunes of
Qx ≈ Qy = 0.32, bunch population N

(1)
p = 1.05 × 1011

for beam 1, and N
(2)
p = r × N

(1)
p for the second beam

with r varying between 0 and 1, proton beam energy of 7
TeV, unperturbed horizontal and vertical rms beam sizes at
the primary collision point σ = 16 × 10−6 m, and an IP
beta function βx,y = 0.5 m. The beam-beam parameters

are defined by ξ
(i)
x,y = N(i)

p rpβx,y

2πγσx,y(σx+σy) with i = 1 for beam
1, and i = 2 for beam 2. With the above LHC parameters
we find ξ ≈ 0.0034. For equal beam sizes, the ratio of the
beam currents, r = N

(2)
p /N

(1)
p = ξ(2)/ξ(1), determines

the behaviour of the system [1]. In the simulation, the
initial coordinates (x, vx, y, vy) for two groups of N
macroparticles representing the two beams are selected
from a Gaussian random distribution in each variable with
< x >= < vx >= < y >=< vy >= 0 and < x2 >=
< v2

x >= < y2 >= < v2
y >= 1.

2 COLLISION WITH EQUAL TUNES

2.1 π- and σ-modes for round beams

First we consider the strong-strong case, r = 1, and head-
on collisions of two bunches.The statistical fluctuation in
the macroparticle distribution is sufficient to excite the co-
herent modes. Fourier analysing the motion of the barycen-
tre of one bunch reveals two coupling modes. One is lo-
cated at Q; the other has a lower frequency. In Fig. 1 the
simulated frequency spectrum of one beam SA(w) is plot-
ted on a logarithmic scale, as determined by an FFT.

We can identify the two dipole coherent modes σ (at the
unperturbed tune) and π. Theoretical studies based on the
linearized Vlasov theory predict a tune shift between the σ
and π-modes equal to Y × ξ. For the case of round beams
this factor is predicted to be Y = 1.21.The shift obtained in
our simulations corresponds to Y ≈ 1.1. The difference is
probably due to the simplifying assumptions of our model,
where the beam-beam forces are calculated assuming that
the beams are of Gaussian shape.
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Figure 1: Frequency spectrum of the bunch centroid mo-
tion (over 217 turns, N = 104 macroparticles) for round
beams with ξx = ξy = ξ = 0.0034, and Q = 0.32. The
horizontal axis gives the distance w to the unperturbed tune
Q in units of ξ, i.e., w= (ν − Q)/ξ. The vertical axis is
the corresponding amplitude on a logarithmic scale. The
π- and σ-oscillation modes are clearly visible.

Between the π and the σ-mode in Fig. 1 we also see the
continuum. This is related to the incoherent oscillation fre-
quencies of individual particles. Due to the non-linearity
of the beam-beam interaction particles with different am-
plitudes experience different focusing force. The result is
an incoherent tune spread, which extends from 0 to −ξ.

We have found a size dependence on the tune. The
size variations as a function of tune can be fitted by the

standard dynamic-beta effect β

β̂
=

√
1 −

(
2πξ0

sin (2πQ)

)2

−
2πξ0 cot (2πQ) with some modification for the strong-
strong case. Integrating the beam-beam force over the
Gaussian distribution, the effective beam-beam force is one
half that experienced by a single particle near the beam cen-
tre. We evaluate then the dynamic beta effect replacing in
this equation ξ0 by Ξ = ξ0/2, see Fig. 2.
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Figure 2: Comparison of the tracking results with the dy-
namic beta effect. Vertical axis: beam size ratio σ2/σ2

0 ,
horizontal axis fractional tune. Points: data obtained from
tracking; curve: σ2/σ2

0 = β̂/β dynamic beta theoretical
prediction with Ξ = ξ0/2.

2.2 Landau damping and emittance growth

If the frequency of the π-mode lies within the incoherent
tune spread its energy is absorbed by individual particles
with similar oscillation frequencies. This phenomenon is
known as Landau damping . The fraction of energy which
is absorbed by the continuum leads to an irreversible emit-
tance growth. Decreasing the beam-beam parameter ratio
r there is a point at which the discrete π-mode joins the
continuum [1, 2]. We launch the two beams with an ini-
tial horizontal offset d = 0.2 (in units of σx) and study
the spectrum of the π-mode at consecutive intervals (not
shown). For the case r = 1 the π-mode is well outside the
continuum and the amplitude (after some initial loss of en-
ergy which is transfered to the continuum) stays constant.
For r = 0.6, the π-mode lies at w = −0.9 (inside the con-
tinuum) the amplitude of the π-mode decreases in time. For
the case r = 0.3 the π-mode is well inside the continuum
and rapidly damped. These results confirm the prediction
that for current ratios r ≤ 0.6 the π-mode frequency falls
in the incoherent tune spread of the weaker beam [1] and
is therefore Landau damped. As a consequence an initial
π-mode oscillation will disappear and the beam emittance
will grow until the π-mode energy has been completely
absorbed. Examples are the two upper curves in Fig. 3.
As expected, the final emittance is larger than for r = 1,
namely ∆εI/ε0 ≈ 0.01.
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Figure 3: Irreversible emittance growth ∆εI/ε0 (vertical
axis) as a function of time (horizontal axis, time in turns)
for three different current ratios, r = 0.3, r = 0.6 and
r = 1. The beams are perturbed by an initial offset of
d = 0.2 (in units of σ). For r ≤ 0.6 the frequency of the π-
mode lies in the continuum, and, thus, the mode is Landau
damped, and the intrinsic emittance grows until the π-mode
energy has been fully absorbed. For r = 1 the π-mode is
not Landau damped, and carries part of the kick energy.
There is an initial emittance growth which is significantly
smaller.

2.3 Long range collisions

The vertical and horizontal tunes are chosen equal (Qx =
Qy = 0.32). Since the tune shifts from long range col-
lisions have opposite signs in the two transverse planes,
for the LHC an alternating crossing scheme was proposed,
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where the beams are separated in orthogonal planes at the
two main IPs. This reduces the overall incoherent tune
shift and tune spread by cancellation of the tune shift be-
tween IPs. We consider two closely spaced bunches per
beam, and two interaction regions (beam 1=[a, b], beam
2=[c, d]). First the bunches are collided head-on (a-c and
b-d). We then apply a phase advance of 90◦ to reach the
long range collision region. There the bunch pairs (a-d) and
(b-c) are collided with a horizontal separation of Lx and a
beam-beam parameter which is npar times stronger than
for the primary collision, representing the accumulated ef-
fect of npar = 32 parasitic collisions around each IP. Sub-
sequently, we advance the phase of the beams to reach the
other interaction region and evaluate the head-on collisions
(a-d) and (b-d). This is followed by another phase advance
of 90◦ to the long range collision point, where again long
range collisions of the pairs (a-d) and (b-c) are applied but
this time with a vertical separation of Ly.

The spectrum of the bunch motion is illustrated in Fig. 4.
Coherent modes still survive outside the continuum. Col-
lision schemes with and without alternating crossing were
compared in Ref. [2], with similar conclusions.
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Figure 4: Spectrum in the case of head-on and long range
collisions with alternating crossing when each bunch col-
lides head-on at two interaction points, and undergoes long
range collisions with npar = 32 bunches behind each IP.
The horizontal axis the tune distance to the unperturbed
betatron frequency in units of the new incoherent tune shift
2 × ξ: w= (ν −Q)/2ξ.

3 SEPARATED TUNES

A. Hofmann pointed out that the coherent frequency shifts
can be reduced by separating the tunes of the two beams.
We simulate this situation operating beam 1 with Q

(1)
x,y =

0.32 and beam 2 with Q
(2)
x,y = 0.31 for ξ = 0.0034. Ex-

ternal impedances cause additional coherent tune shifts.
We model the effect of the ring impedance applying in
the vertical plane only, every turn, a localized kick that
depends linearly on the bunch centroid position ∆vy =
−4π∆QZ,y < y >. This results in a coherent tune shift
of the centroid motion (dipole mode), but has no effect on
the tunes of individual particles (incoherent spectrum). The

continuum of beam 2 extends from (0.31− ξ = 0.3066) to
0.31, and that of beam 1 from (0.32− ξ) = 0.3166 to 0.32.
In the horizontal plane both coupling modes are now inside
the incoherent spread of one or the other beam, and Landau
damping is restored. But in the vertical plane, and due to
the impedance tune shift, the coherent modes emerge from
the incoherent spectrum, see Fig. 5.
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Figure 5: Spectrum in the case of head-on collision of
bunch 1 with tune Q

(1)
x,y = 0.32 and bunch 2 with tune

Q
(2)
x,y = 0.31. Horizontal axis: tune; vertical axis: the cor-

responding oscillation amplitude for the horizontal (left)
and vertical (right) motion of beam 1. In the horizontal
plane Landau damping is restored, but in the vertical plane
an additional coherent tune shift of +20× 10−4 pushes the
vertical coherent modes away from the continuum.

4 CONCLUSIONS

We have confirmed that, for equal beam sizes and current
ratio 0 < r ≤ 0.6, the π-mode lies within the continuum
and is Landau damped. Its energy is transferred to the con-
tinuum, leading to an irreversible finite emittance growth.
For equal beam-beam parameters of the two beams, we find
a π-mode tune shift of −1.1 in units of ξ, sufficiently large
to place it outside of the continuum and to lose Landau
damping [1]. We have observed a decrease of the beam
size with increasing fractional tune, which is explained by
the dynamic beta effect.

In the case of two equally strong beams with head-on
and long range collisions, coherent modes exist outside of
the continuum, even with alternating crossing at two IPs.
However, if the betatron tunes of the two beams are suffi-
ciently different, and if the impedance coherent tune shift
is lower than ∆Q = 2 × 10−3, the frequencies of the co-
herent modes are shifted towards the continuum of one or
the other beam and Landau damping can be restored.
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