
DEVELOPMENT OF BEAM DYNAMICS APPLICATIONS
WITHIN A CORBA FRAMEWORK AT THE SLS

M. Böge, J. Chrin, M. Mu˜noz, A. Streun, PSI, Villigen, Switzerland
Abstract

A distributed client-server model, based on the Common
Object Request Broker Architecture (CORBA), has been
established to interface beam dynamics applications at the
Swiss Light Source (SLS) to essential software packages
such as the accelerator physics package TRACY and the
Common DEVice (CDEV) control library. Within this
model remote clients can invoke computer intensive meth-
ods, such as beam orbit correction procedures, on a ded-
icated server. Access to the SLS accelerator devices is
achieved through a dedicated C++ CDEV server. A status
report on application development within the established
CORBA framework is given.

1 INTRODUCTION

The SLS[1] is a 2.4 GeV electron storage ring current-
ly under construction at the Paul Scherrer Institute (PSI),
Switzerland. Electrons from an injector booster syn-
chrotron, fed by a 100 MeV linac[2], are transferred to the
storage ring at full operating energy. Scheduled for opera-
tion in August 2001, the SLS will provide synchrotron ra-
diation of high brilliance to experimenters from a variety of
disciplines. A considerable number of high-level beam dy-
namics Application Program Interfaces (APIs) are required
for the commissioning and operation of the SLS accelera-
tor complex and for machine physics studies. These APIs
typically share a number of generic tasks including:

� access to an accelerator physics package,
� accelerator device control,
� database access and management, and
� logging of messages and alarms.

With the aid of object-oriented methodology, common
functions can be identified and developed as reusable com-
ponents. Furthermore, a distributed system allows optimal
use of available resources, an important consideration giv-
en the CPU intensive physics algorithms employed by the
accelerator modelling procedures. To this end, a distributed
client-server model, based on the Common Object Request
Broker Architecture (CORBA)[3], has been proposed[4];
client programs readily access shared services, either lo-
cally or across the network, through CORBA objects.

2 THE CORBA FRAMEWORK

In the evolution of object-oriented distributed computing
systems, CORBA is a recent standard that provides a mech-
anism for defining interfaces between distributed compo-
nents. Its most distinguished assets are platform indepen-
dence, in so far as the platform hosts a CORBA Object Re-

quest Broker (ORB) implementation, and language inde-
pendence, as ensured through the use of the Interface Defi-
nition Language (IDL). The latter feature is of particular in-
terest to SLS beam dynamics API developers as it provides
for the option between high-level application languages.

2.1 Server Hardware and System Software
Components

The chosen platform for server software components is a
dual 600 MHz Intel Pentium III system (“Model Server”)
running Linux (RedHat 6.0). The use of Linux and the
GNU project C++ compiler (egcs) avoids vendor depen-
dency; compilation with egcs further reduces the depen-
dency on the operating system thereby increasing the porta-
bility of applications. A mirror server is permanently avail-
able to provide redundancy.

The ORB (Object Request Broker) employed is
MICO[5] a fully compliant CORBA 2.3 implementation
available under GNU public license terms. Use is made
of the Implementation/Interface Repository facilities, the
Naming Service and the Event Service1 of the ORB.
MICO provides IDL to C++ mapping. The Tcl interface
Combat[6] adds the Tcl mapping to MICO. For Java map-
ping the Java-based ORB JavaORB[7] is used2.

2.2 Client-Server Software Components

Fig. 1 illustrates the conceptual design of the client-server
software components. The C++ based server components
run exclusively on the “Model Server”. The Tcl/Tk[8] and
Java[9] based clients reside on the consoles. The following
describes the server components:

� CDEV Server: Synchronous and asynchronous inter-
action with the EPICS-based SLS control system[10]
is achieved through the use of the CDEV C++ class
library (version 1.7.2)[11]. A dedicated CORBA
CDEV server responds to the CDEV-type verbs ”set”,
”get” and ”monitor” which respectively download set-
points, readback device attributes and monitor select-
ed channels. A change in value of a monitored chan-
nel invokes the CDEV callback function, wherein the

1The Event Service provides services for the creation and manage-
ment of CORBA event channels that may be used by CORBA suppli-
er/consumer clients to propagate events asynchronously on a push or pull
basis. Event channels are created and registered with the CORBA Naming
Service allowing clients to obtain object references in the usual manner.
Communication is anonymous in that the supplier does not require knowl-
edge of the receiving objects. The CORBA Event Service has been useful-
ly employed in the monitoring of hardware devices and in the distribution
of recalibrated data to client consumers.

2The Internet Inter-ORB Protocol (IIOP) allows for the communica-
tion between different ORBs which fulfill the CORBA 2.0 specification.

Proceedings of EPAC 2000, Vienna, Austria1354

G U I TRA CY

Tcl/Tk or Java

client

 A PI

 Local Control System

CD EV

Server

M onitor Control

 A nalysis

 Server

 Database

S

S

e

e

r

r

v

v

e

e

r

r

Oracle Database

 M essage

 S e r ver

 A ll processes

Event Channel

Event Channel

NET8

CA

Model Server

Console

IIOP

Figure 1: Conceptual design of the client-server software components.

new data value is both stored in memory and supplied
to a CORBA event channel. Clients can either re-
trieve data from memory through the invocation of a
CORBA method or be informed of new values by sub-
scribing to events from the appropriate event channel.

� Analysis Server: Typically data from the real-time
control system require recalibration and/or analysis
before being displayed by the client consumer. Such
tasks are handled by the analysis server. Recalibrated
data are then distributed to clients through a CORBA
event channel.

� TRACY Server(s): The TRACY[12] servers provide
access to the TRACY based models of transfer lines,
booster synchrotron and storage ring. This includes
methods to retrieve linear optics parameters for giv-
en machine settings and to perform model based cor-
rections. The capability of having access to all ac-
celerator physics routines of the C-based TRACY li-
brary in itself provided strong motivation for the use
of CORBA as it allows access to the same machine
model as used in offline simulations; procedures test-
ed in simulation can be effectively employed for the
optimization of the acceleratoronline.

� Database Server: The CORBA database server pro-
vides access to the Oracle instances. It utilizes the
OCI8 (Oracle Call Interface) API through the OTL
(Oracle Template Library) library[13]. The OTL code
is expanded into direct database API function calls,
thus providing ultimate performance and reliability.
For the time being the server gives access to “static”
database tables, but it is foreseen to use it for fast “on-
line” data storage as well.

� Message Server: All client-server processes are able
to report messages and alarms to a dedicated CORBA

message server. The server employs the UNIX syslog
message logging facility incorporating a variety of
priority levels. Syslog entries are further written to
a named pipe. A listening server converts them to
SQL insert queries for immediate entry into the Oracle
database utilizing the native Oracle SQL*Plus client.
Error messages are viewed either through a Tcl/Tk
based browser polling the log files or by retrieving the
corresponding database table.

3 THE APPLICATIONS

Table 1 summarizes the applications needed for the linac
(commissioned in February 2000), the linac-booster trans-
fer line and the booster synchrotron (to be commissioned
in July 2000).

To illustrate the look and feel of the CORBA based ap-
plications, a screen shot of a Tcl/Tk based application is
shown in Fig. 2 which displays linear optics parameters of
the linac-booster transfer line optics derived from the actual
magnet currents. This client invokes methods on a dedicat-
ed TRACY server implementing the optics model of the
transfer line, the CDEV server to set quadrupole currents
and the message server to perform the logging of messages.
The actual quadrupole currents get automatically pushed to
the client through a CORBA event channel to which the
client subscribes. The analysis server acts as the push sup-
plier retrieving the data from the CDEV server which mon-
itors the devices. It is interesting to note that the Tcl/Tk
client program is comparatively short in length and, there-
fore, quite managable. Optimal use of the Tcl/Tk package
is made for building the graphical user interface component
of the API, while the more complex components are routed
to server processes on the “Model Server”.

1355Proceedings of EPAC 2000, Vienna, Austria

magnet
control
panel

quadrupole
equalizer

horizontal
beta function
vers. position

chooser
synoptic

value
beta
initial

data
acquisition

start/stop

Figure 2: Linac-booster transfer line application “Transferline Twiss Parameters”.

Table 1: Application catalogue for linac and booster
Linac Booster

emittance measurement injection knobs
energy jitter measurement beam threader

monitor control orbit correction
optics parameters (Fig. 2) local orbit bumps

tune measurement
tune control

response matrix
dispersion & chromaticity

ramp editor
lifetime

beam loss monitors
lattice generator

4 CONCLUSION

Beam dynamics applications have been successfully devel-
oped in a CORBA framework. It has been demonstrated
that the presented complex client-server model is reliable
and managable.

REFERENCES

[1] M. Bögeet al., “The Swiss Light Source Accelerator Com-
plex: An Overview”, EPAC’98, Stockholm, June 1998.

[2] M. Pedrozzi, C. Piel, “Commissioning of the SLS-Linac”,
Contribution to this Conference.

[3] Object Management Group (OMG), “The Common Objec-
t Request Broker: Architecture and Specification, Revision
2.2”, February 1998.

[4] M. Böge, J. Chrin, “A CORBA Based Client-Server
Model for Beam Dynamics Applications at the SLS”,
ICALEPCS’99, Trieste, October 1999.

[5] A. Puder, K. Römer, “Mico is CORBA, Version 2.2.2”,
Pub: dpunkt.verlag, December 1998.

[6] F. Pilhofer, “Combat, CORBA scripting with Tcl”,
http: //www.informatik.uni-frankfurt.de/˜fp/Tcl/tclmico/.

[7] J. Daniel, “JavaORB”,
http://www.multimania.com/dogweb/detailsjavaorb.html.

[8] J.K. Ousterhout, “Tcl and the TK Toolkit”, Pub: Addison-
Wesley, 1994.

[9] “Java”, http://java.sun.com/.

[10] S. Huntet al., “Control and Data Acquisition System of the
Swiss Light Source”, ICALEPCS’99, Trieste, October 1999.

[11] J. Chen et al., “CDEV: An Object-Oriented Class
Library for Developing Device Control Applications”,
ICALEPCS’95, Chicago, November 1995.

[12] J. Bengtsson, “TRACY-2 User’s Manual”, SLS Internal
Document, February 1997; M. B¨oge, “Update on TRACY-
2 Documentation”, SLS Internal Note, SLS-TME-TA-1999-
0002, June 1999.

[13] S. Kuchin, “Oracle and Odbc Template Library Program-
mer’s Guide”, http://home.sprynet.com/˜skuchin/.

Proceedings of EPAC 2000, Vienna, Austria1356

