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Abstract Here the stochastic partis = y x 1.15026/E, u. where
h ilibrium lonaitudinal motion of el ...y is a random variable taken from a gaussian distribution
The equilibrium longitudinal motion of electrons emitting,, .1, G=0,12 = 1,45 =0,y — 3, etc.

radiation in a synchrotrpn IS well established, bl_Jt_ less so The equations (1,2) are deficient in a number of respects.
the turn-by-turn dynamics. It is customary to divide the

true photon emission into a smooth, continuous radiation ¢ The damping term is given approximately.

loss and a stochastic quantum excitation with zero mean.e The effect upon the phase advance (during the turn in
We offer[3, 4, 5] the following improvements over previ- which it is emitted) of emitting damping radiation is
ous treatments. (1) Exact equations are given for the smooth completely omitted from the equations. To be clear,
part including the exponential “saw tooth” of the reference  two effects are ignored: (i) that of emitting smooth,
particle, and some other second order effects. (lI) The continuous radiation and (ii) that of the random emis-
stochastic part of the per turn cumulative energy loss is  sion times and values of the quanta.

not gaussian distributed. Using the Tchebychev-Hermite e The average number of quanta emitted per particle per

expansion about a gaussian kernel we givetthe distri- turn is in all existing machines too few for the Central
bution. The technique is general and can be applied to the Limit Theorem to apply; and so the distributidt(y)
multiple self-convolution of any distribution function. (III) is not gaussian.

We give the effects, during the turn in which they are emit-

ted, upon the phase advance of emitting multiple hc),[Ong':urther, Bassetti originally omi_tted the average energy loss
P P g Pep per turn. Subsequent authors included the effect, but made

no attempt to transform to coordinates which remove the

1 INTRODUCTION sawtooth energy variation.

The goal of this Wor_k |s_to derlv_e finite difference equatl_ons 2 DAMPING EFFECT

(FDEs) for the longitudinal motion of an electron beam in a

synchrotron. The beam will emit electromagnetic radiatiotunder a classical description, the damping effect of radia-

and decelerate. The intention is to iterate the FDEs ondi@n, along a patls in bending magnets, is given by:

per crossing of the rf cavities that accelerate the beam. d P

The ideal simulation of synchrotron radiation would {d_s +04st} Ap ~ —asps where «a,; = 03;5 N )

have each emission event simulated individually. How-

ever, there are typically hundreds of photons emitted peket ps be bending radius) dispersion,B’ magnetic gra-

particle per turn; and this approach is computationally pradient andC’ machine circumference.

hibitive. Instead an approximate strategy is adopted. The ,
L . . L 1 1 B 1

effect is divided into a smooth, continuous radiation loss, J. =2 {1 -+ 5}{ [E +3 (8)] D(S)dS} - (4)

and a stochastic photon excitation with zero mean whose 7 s P

cumulative effect is modelled by one *fat photon’ per turn. The solution of equation (3) with initial conditiafypy, is:

1.1 FDEsintheliterature Ap(s) = =ps/Js + [Apo + po/ JiJe ™™/ (5)

Let P, be the radiation powet;, the energy radiated per 2 1 Sip factor
turn, E, the synchronous particle energy, = v./c the . . .
kinematic parametet], the longitudinal partition number, The orbit period of an off-momentum particle is given by
u, the critical photon energy, and let= (E.,J,)/(E,32). T = Ts + A7 where
Letp, be synchronous momentum, the slip factorp har- c
. ~ AT 1 D(s) 1| Ap(s)
monic numberw, /27 synchrotron frequencyy peak ac- = —/ { - —2] ds (6)
celerating voltage angthe particle charge. Further, let us Ts CJo Lels) 5] s
take energy and phase coordinatesy) relative to a saw- -1 Apo 1\ (1—-e%
tooth reference particle and synchronous phhseo be s {JS <p—s Z) a ] - M
defined below. The following FDEs, originally stated by
Bassetti and Renieri[1], have been reproduced many timeghe sawtooth reference momentym,= ps+ Ap,., is that
for which the orbit-period incremedt~ = 0, and may be

bro1 = bp+2m hns - o found exgctly[4] from (7). The s_ynchronou; phase is found

PsVs by equating the energy gained in the rf cavity to the energy
ent1 = ex(l—a)+ qV[sin(®s + ¢ri1) —sin®,] + R (2) lost by radiationgV sin®, = E.,.

Q
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2.2 Motion relative to reference sawtooth 3.3 Distribution of number of photons emitted

The motion of a general particle of momentpm= p; + Because the emission is a stochastic process, not all elec-
Ap, + op(t), with respect to the sawtooth reference motrons emit the same number of photons. The probability
mentum, results in the following difference equation forto emitn photons,P,,, follows a Poisson distribution with

momentum change per turn due to radiation loss: mean equal ten. HenceP,, = e=™m"/nl.
Y Based on the convolution property that means add, we
0pr+1 = Opre” ", ®)  havel, = U x Py, (U)dU = nlU, = nu. This im-

where the suffixc denotes the iteration number. The relaplies the expectation value of energy loss is given by

tive increment of traversal time, from (7), is given by

67k /Ts = ns(0p/ps)(1 — e ) /a . 9)
This gives rise to a phase changeafg, = 27h(d7/75). Now, E, = (U,) and thusn = (n) = E, /a.

<U_n>=Z7’nU_n=ﬂ Prxn=1u{n)=um. (11)
n=0

n=0

3 QUANTUM EXCITATION 3.4 Expected cumulative spectrum

Let us assume that we are in the regime of a few hundr%—é) find the probability distribution of losing an energy

o . . ecrement/, from any number of photon emissions, we
or more photon emissions per particle per turn. Firstly, foﬁave to form the expectation value
a single electron we must find the ‘fat photon’ energy loss P

H oo
and lumped phase advance that have equivalent effect to Py = (Py.) = ZPnPUn ~ Py . (12)
e the energy decrement arising from stochastic emission n=0
of several or, possibly, many photons;
e and the cumulative phase advance arising fro
stochastically accumulating photon emissions.

If we draw the energy decremetitof each macro-particle
Tom the distributionPy; (U) then they will be representa-
tive but still stochastic. Unfortunately, what is so concep-
Secondly, because a single simulation macro-partictgally simple turns out to be a formidable task when the
stands in place of a very large number of electrons, waingle-event spectrum is given by the bizarre function (10).
must find how to make the calculated energy decrement

and phase increment representativenafiy particles. 3.5 Tchebychev-Hermite Expansion

' A We must find them-fold self-convolutionPy;,, wherem
3.1 Single-emission spectrum may be tens, hundreds, thousands, etc.. We adopt the fol-
Le K, be modified Bessel function of the second kind ofowing strategy. First we find how the momeﬁTg evolve
fractional orderr = 5/3. The probability, see Fig,1, of with n. Next we construct a function that has the same
emitting a single photon of energy= zu.. is given by moments up to some order, and which approxim&es
oo Let 02 = w2 be the variance oP, about the mean.
ucPy(u) = Px (z) :/ Ks/3(2)dz/[0(11/6)T(1/6)] . (10)  We define the normalized moments as$: = u* /o*, with
v uk = [T u*P,(u)du and introduceX,, = U, /0. Con-
sider now Fourier Transforms @f, and Px, expanded in

035 Taylor series of the transform variable
0.3

0-25 FT{P:} :X:aksk = A(s), FT{Px,} :z:cksk = C(s,n).
0.2 k=0 k=0

018 The coefficients o&* are directly proportional to the®
0-1 moments of the two distribution functions, that is

0. 05

oF = [i7"Klar, and XF =[i"FK!er(n) . (13)

1 2 3 4 5

Suppose that we can find a suitable functi®fs) = by +

bis + bys® + ...+ bys' suchthatd = B up to orders’ in

A, then the evolution of the moments can be obtained from

Figure 1: Single-event photon emission spectriiy,

3.2 Cumulative spectrum

Consider the case that an electron emits preciselyotons

and let us ask what is the probability distribution of theThe coefficientd,, are calledsemi-invariants2]. Now by
cumulative sunt/,, = 3", u;, wherei is the eventindex. a suitable choice of the coordinate origin = 0. Hence
This cumulativen-event probability,Py,,, is given by the the first few coefficients irB are:by = b1 = 0, b2 = axg,

n-fold self-convolution ofP,,. bz = az, by = as — a3 /2, bs = as — azas, €tc..

FT{Px,} =C(s) =[A(s)]" = exp[n x B(s)] . (14)
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Evidently, asn increases, so the length scalefof, in-  C/m and say that the probability of emission is unity in a
creases ag/n or faster. Thus we introduce the variablecell. The average effect will be as if the photon is emitted
Z, = Xn/+/n which has a scale independentraf We in the centre of the cell. Thus we can treat the emission
split B into a quadratic part and higher order terms. Thusindex: as the cell index and write the stochastic part:

—+oo

o0 k
—isy —s? s
szZn(z):/ dse "%e™ /Qexp{nE —bk} .(15)
_ — vn*

hns 1

DPsUs T

A(Zsstoch =27 (17)

m—1
Z AU; + %AUM
i=1

Let f(s) = FT[F(t)]. There is the general theorem
2 (id/dz)" F(t) = [T2° e7=5[s¥ f(s)]ds. Hence follows
the Tchebychev-Hermite[2, 3] expansion

B bs (. d\®  baf d\', b5 (. d\°
Pz, () = [H% (z) + (z) + 7= (z)
B2 b\ /. d\° e~ /2

Once the derivatives are performed, and numerical values

are substituted in place of the coefficients, this unwield

Here AU; = >7'_, Auy; and the individualAu; have
zero mean. Our task is to estimate the likely value of
Adostocn from knowledge only ofAU,,,.

We may think of the set of valueAU; as a path. An
example set of such paths is presented in Fig.3. Of course,
infinitely many paths are possible that all terminate on pre-
cisely the same valuAU,,. For givenAU,,, the ensemble
average[5] of all possible paths, and the most likely[5] path,
is AU; = (i/m)AU,,. Hence the phase advance is

y <A¢stoch> - 27T(hns/psvs)(AUm,/2) . (18)

form compacts into the product of a “correction polyno-

mial” and a gaussian core. Fig.2 shows, for example, the

result of trials drawn fronPz,., in the caseP, is (10).
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Figure 2: Histogram o’z for n=270 based omh0° trials.

3.6 Phase advance

We model the true radiation emission by the average en-
ergy loss plus a stochastically varying part with zero mean.

Thus we write the single quantum energy lossuas=

u + Au; whereAuw,; is bi-polar. The energy change after
m emissions becomds,,, = mu + AU, whereAU,,, =
Yo, Au;. The systematic partpu has already been in-

4 DIFFERENCE EQUATIONS
The difference equations from thé" to (k+ 1) turn are:

(1—e®)

hns

1
¢k+1 ¢k + 27 €k + §A (19)

Ek+1 cre ¢+ qV[sin(<I>5 + dr+1) — sin @] + A . (20)

Here A = x x 1.00755,/E,u. is the stochastic part of
the ‘fat photon’ and is different for each macro-particle
and each turnz is a dimensionless random variable drawn
from the probability distribution of the cumulative sum of
m photon emissions, in normalized coordinates. Thus
0,22 = 1, 23 = 0.640018/\/m, x* = 3 — 0.74302/m,
etc.. Inthe hypothetical case that= 0 and we linearize
about®,, the FDEs have an exact solutiofy;,, = ¢o\™,

Em = €A™ With A = exp(ip — a/2) and
5sinh(a/2)
a2

E]

4sin?(p/2) = w + 2[1 —cosh(a/2)] . (21)

5 CONCLUSION
Iteration of the FDEs (1, 2) or (19, 20) will lead to little

cluded in the reference sawtooth and concerns us no |OnggHalitative difference — but it is natural to wish to use exact

10C

equations (19, 20) when they are available and no extra
computational cost is involved.
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