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Abstract

The equilibrium longitudinal motion of electrons emitting
radiation in a synchrotron is well established, but less so
the turn-by-turn dynamics. It is customary to divide the
true photon emission into a smooth, continuous radiation
loss and a stochastic quantum excitation with zero mean.
We offer[3, 4, 5] the following improvements over previ-
ous treatments. (I) Exact equations are given for the smooth
part including the exponential “saw tooth” of the reference
particle, and some other second order effects. (II) The
stochastic part of the per turn cumulative energy loss is
not gaussian distributed. Using the Tchebychev-Hermite
expansion about a gaussian kernel we give thetrue distri-
bution. The technique is general and can be applied to the
multiple self-convolution of any distribution function. (III)
We give the effects, during the turn in which they are emit-
ted, upon the phase advance of emitting multiple photons.

1 INTRODUCTION

The goal of this work is to derive finite difference equations
(FDEs) for the longitudinal motion of an electron beam in a
synchrotron. The beam will emit electromagnetic radiation
and decelerate. The intention is to iterate the FDEs once
per crossing of the rf cavities that accelerate the beam.

The ideal simulation of synchrotron radiation would
have each emission event simulated individually. How-
ever, there are typically hundreds of photons emitted per
particle per turn; and this approach is computationally pro-
hibitive. Instead an approximate strategy is adopted. The
effect is divided into a smooth, continuous radiation loss,
and a stochastic photon excitation with zero mean whose
cumulative effect is modelled by one ‘fat photon’ per turn.

1.1 FDEs in the literature

Let Pγ be the radiation power,Eγ the energy radiated per
turn, Es the synchronous particle energy,βs = vs/c the
kinematic parameter,Js the longitudinal partition number,
uc the critical photon energy, and leta ≡ (EγJs)/(Esβ

2
s).

Let ps be synchronous momentum,ηs the slip factor,h har-
monic number,ωs/2π synchrotron frequency,̂V peak ac-
celerating voltage andq the particle charge. Further, let us
take energy and phase coordinates(ε, φ) relative to a saw-
tooth reference particle and synchronous phaseΦs to be
defined below. The following FDEs, originally stated by
Bassetti and Renieri[1], have been reproduced many times:

φk+1 = φk + 2π
hηs

psvs
εk (1)

εk+1 = εk(1 − a) + qV̂ [sin(Φs + φk+1) − sin Φs] + R .(2)

Here the stochastic part isR = y×1.15026
√
Eγuc where

y is a random variable taken from a gaussian distribution
with ȳ = 0, ȳ2 = 1, ȳ3 = 0, ȳ4 = 3, etc.

The equations (1,2) are deficient in a number of respects.

• The damping term is given approximately.
• The effect upon the phase advance (during the turn in

which it is emitted) of emitting damping radiation is
completely omitted from the equations. To be clear,
two effects are ignored: (i) that of emitting smooth,
continuous radiation and (ii) that of the random emis-
sion times and values of the quanta.

• The average number of quanta emitted per particle per
turn is in all existing machines too few for the Central
Limit Theorem to apply; and so the distributionP (y)
is not gaussian.

Further, Bassetti originally omitted the average energy loss
per turn. Subsequent authors included the effect, but made
no attempt to transform to coordinates which remove the
sawtooth energy variation.

2 DAMPING EFFECT

Under a classical description, the damping effect of radia-
tion, along a paths in bending magnets, is given by:[

d

ds
+ αsJs

]
∆p ≈ −αsps where αs =

Pγ

v2
sps

. (3)

Let ρs be bending radius,D dispersion,B ′ magnetic gra-
dient andC machine circumference.

Js = 2

{
1 − 1

γ2
s

+
1

C

∮ [
B′

B

∣∣∣∣
s

+
1

2ρ(s)

]
D(s)ds

}
. (4)

The solution of equation (3) with initial condition∆p0 is:

∆p(s) = −ps/Js + [∆p0 + ps/Js]e−as/ρs . (5)

2.1 Slip factor

The orbit period of an off-momentum particle is given by
τ = τs + ∆τ where

∆τ

τs
=

1

C

∫ C

0

[
D(s)

ρ(s)
− 1

γ2
s

]
∆p(s)

ps
ds (6)

≈ ηs

[
−1

Js
+

(
∆p0

ps
+

1

Js

)
(1 − e−a)

a

]
. (7)

The sawtooth reference momentum,pr = ps+∆pr, is that
for which the orbit-period increment∆τ = 0, and may be
found exactly[4] from (7). The synchronous phase is found
by equating the energy gained in the rf cavity to the energy
lost by radiation:qV̂ sinΦs = Eγ .
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2.2 Motion relative to reference sawtooth

The motion of a general particle of momentump = ps +
∆pr + δp(t), with respect to the sawtooth reference mo-
mentum, results in the following difference equation for
momentum change per turn due to radiation loss:

δpk+1 = δpke
−a , (8)

where the suffixk denotes the iteration number. The rela-
tive increment of traversal time, from (7), is given by

δτk/τs = ηs(δpk/ps)(1 − e−a)/a . (9)

This gives rise to a phase change of∆δφk = 2πh(δτk/τs).

3 QUANTUM EXCITATION

Let us assume that we are in the regime of a few hundred
or more photon emissions per particle per turn. Firstly, for
a single electron we must find the ‘fat photon’ energy loss
and lumped phase advance that have equivalent effect to

• the energy decrement arising from stochastic emission
of several or, possibly, many photons;

• and the cumulative phase advance arising from
stochastically accumulating photon emissions.

Secondly, because a single simulation macro-particle
stands in place of a very large number of electrons, we
must find how to make the calculated energy decrement
and phase increment representative ofmany particles.

3.1 Single-emission spectrum
Le Kν be modified Bessel function of the second kind of
fractional orderν = 5/3. The probability, see Fig,1, of
emitting a single photon of energyu = xuc is given by

ucPu(u) = PX(x) =

∫ ∞

x

K5/3(z)dz/[Γ(11/6)Γ(1/6)] . (10)
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Figure 1: Single-event photon emission spectrum,PX

3.2 Cumulative spectrum

Consider the case that an electron emits preciselyn photons
and let us ask what is the probability distribution of the
cumulative sumUn ≡

∑n
i=1 ui, wherei is the event index.

This cumulativen-event probability,PUn , is given by the
n-fold self-convolution ofPu.

3.3 Distribution of number of photons emitted

Because the emission is a stochastic process, not all elec-
trons emit the same number of photons. The probability
to emitn photons,Pn, follows a Poisson distribution with
mean equal tom. HencePn ≡ e−mmn/n!.

Based on the convolution property that means add, we
haveUn =

∫ ∞
0 U × PUn(U)dU = nŪ1 = nū. This im-

plies the expectation value of energy loss is given by

〈Un〉 =
∞∑

n=0

PnUn = ū
∞∑

n=0

Pn×n = ū 〈n〉 = ūm . (11)

Now,Eγ = 〈Un〉 and thusm ≡ 〈n〉 = Eγ/ū.

3.4 Expected cumulative spectrum

To find the probability distribution of losing an energy
decrementU , from any number of photon emissions, we
have to form the expectation value

PU ≡ 〈PUn〉 =
∞∑

n=0

PnPUn ≈ PUm . (12)

If we draw the energy decrementU of each macro-particle
from the distributionPU (U) then they will be representa-
tive but still stochastic. Unfortunately, what is so concep-
tually simple turns out to be a formidable task when the
single-event spectrum is given by the bizarre function (10).

3.5 Tchebychev-Hermite Expansion

We must find them-fold self-convolutionPUm wherem
may be tens, hundreds, thousands, etc.. We adopt the fol-
lowing strategy. First we find how the momentsUk

n evolve
with n. Next we construct a function that has the same
moments up to some order, and which approximatesPUn .

Let σ2 ≡ ū2 be the variance ofPu about the mean̄u.
We define the normalized moments as:x̄k = ūk/σk, with
ūk =

∫ +∞
−∞ ukPu(u)du and introduceXn = Un/σ. Con-

sider now Fourier Transforms ofPx andPXn expanded in
Taylor series of the transform variables.

FT {Px} =

∞∑
k=0

aks
k ≡ A(s), FT {PXn} =

∞∑
k=0

cks
k ≡ C(s, n).

The coefficients ofsk are directly proportional to thekth

moments of the two distribution functions, that is

xk = [i−kk!]ak and Xk
n = [i−kk!]ck(n) . (13)

Suppose that we can find a suitable functionB(s) = b0 +
b1s + b2s

2 + . . . + bls
l such thatA = eB up to ordersl in

A, then the evolution of the moments can be obtained from

FT {PXn} = C(s) = [A(s)]n = exp[n×B(s)] . (14)

The coefficientsbk are calledsemi-invariants[2]. Now by
a suitable choice of the coordinate origina1 = 0. Hence
the first few coefficients inB are: b0 = b1 = 0, b2 = a2,
b3 = a3, b4 = a4 − a2

2/2, b5 = a5 − a2a3, etc..
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Evidently, asn increases, so the length scale ofPXn in-
creases as

√
n or faster. Thus we introduce the variable

Zn = Xn/
√
n which has a scale independent ofn. We

splitB into a quadratic part and higher order terms. Thus

2πPZn(z) =

∫ +∞

−∞
ds e−isze−s2/2 exp

{
n

∞∑
k=3

sk

√
nk

bk

}
.(15)

Let f(s) = FT [F (t)]. There is the general theorem
2π (id/dz)k

F (t) =
∫ +∞
−∞ e−izs[skf(s)]ds. Hence follows

the Tchebychev-Hermite[2, 3] expansion

PZn(z) =

[
1 +

b3√
n

(
i
d

dz

)3

+
b4
n

(
i
d

dz

)4

+
b5√
n3

(
i
d

dz

)5

+

(
b23
n

+
b6
n2

)(
i
d

dz

)6

+ . . .

]
e−z2/2

√
2π

. (16)

Once the derivatives are performed, and numerical values
are substituted in place of the coefficients, this unwieldy
form compacts into the product of a “correction polyno-
mial” and a gaussian core. Fig.2 shows, for example, the
result of trials drawn fromPZ270 in the casePu is (10).

Figure 2: Histogram ofPZn for n=270 based on105 trials.

3.6 Phase advance

We model the true radiation emission by the average en-
ergy loss plus a stochastically varying part with zero mean.
Thus we write the single quantum energy loss asui =
ū + ∆ui where∆ui is bi-polar. The energy change after
m emissions becomesUm = mū + ∆Um where∆Um =∑m

i=1 ∆ui. The systematic part,mū has already been in-
cluded in the reference sawtooth and concerns us no longer.

Figure 3: Examples of paths, each consisting of 100 steps,
that lead toXm = 6.84

We suppose the bending magnets to be isomagnetic so
that the probability of photon emission is uniform. Hence
we may subdivide the circumference into cells of length

C/m and say that the probability of emission is unity in a
cell. The average effect will be as if the photon is emitted
in the centre of the cell. Thus we can treat the emission
indexi as the cell index and write the stochastic part:

∆φstoch = 2π
hηs

psvs

1

m

[
m−1∑
i=1

∆Ui +
1

2
∆Um

]
. (17)

Here∆Ui =
∑i

j=1 ∆uj; and the individual∆uj have
zero mean. Our task is to estimate the likely value of
∆φstoch from knowledge only of∆Um.

We may think of the set of values∆Ui as a path. An
example set of such paths is presented in Fig.3. Of course,
infinitely many paths are possible that all terminate on pre-
cisely the same value∆Um. For given∆Um, the ensemble
average[5] of all possible paths, and the most likely[5] path,
is ∆Ui = (i/m)∆Um. Hence the phase advance is

〈∆φstoch〉 = 2π(hηs/psvs)(∆Um/2) . (18)

4 DIFFERENCE EQUATIONS

The difference equations from thekth to (k+1)th turn are:

φk+1 = φk + 2π
hηs

psvs

[
(1 − e−a)

a
εk +

1

2
∆

]
(19)

εk+1 = εke
−a + qV̂ [sin(Φs + φk+1) − sin Φs] + ∆ . (20)

Here∆ = x × 1.00755
√
Eγuc is the stochastic part of

the ‘fat photon’ and is different for each macro-particle
and each turn.x is a dimensionless random variable drawn
from the probability distribution of the cumulative sum of
m photon emissions, in normalized coordinates. Thusx̄ =
0, x̄2 = 1, x̄3 = 0.640018/

√
m, x̄4 = 3 − 0.74302/m,

etc.. In the hypothetical case that∆ ≡ 0 and we linearize
aboutΦs, the FDEs have an exact solution:φm = φ0λ

m,
εm = ε0λ

m with λ = exp(iµ− a/2) and

4 sin2(µ/2) = ω2
s

sinh(a/2)
a/2

+ 2[1− cosh(a/2)] . (21)

5 CONCLUSION

Iteration of the FDEs (1, 2) or (19, 20) will lead to little
qualitative difference – but it is natural to wish to use exact
equations (19, 20) when they are available and no extra
computational cost is involved.
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