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Abstract

We study longitudinal coherent motion of a stored electron
beam by a time domain integration of the nonlinear Vlasov-
Fokker-Planck equation. For the present SLAC damping
rings we found several features in agreement with experi-
ment. This report emphasizes the earlier vacuum chamber
of the rings, replaced in 1992-93. Nonlinear effects are
much stronger for the old chamber, and the computed phe-
nomena more various.

1 INTRODUCTION

Comparable studies of longitudinal instabilties in storage
rings have relied on one of two methods: (1) lineariza-
tion of the Vlasov equation about the equilibrium solution
of the full Vlasov-Fokker-Planck equation [1]; (2) simula-
tion by tracking a large number of macroparticles, includ-
ing a model of radiation with quantum fluctuations, e.g.[2].
Recently two of the authors developed a method for time-
domain integration of the nonlinear Vlasov-Fokker-Planck
(VFP) equation [3]. In principle, this accomplishes the
same thing as method (2), but in practice there are two im-
portant advantages: the resulting phase space distributions
have very low noise, and the integration can be done over a
period equal to several realistic damping times.

Our method of integration, described in detail in Ref.[3],
uses operator splitting to treat the Vlasov and Fokker-
Planck terms independently. The Fokker-Planck operator
is handled by an elementary method for partial differential
operators. The key to success is to use a different technique
for the Vlasov term, a method with a clear motivation in the
basic structure of the Vlasov equation as an expression of
probability conservation. We call the technique the Method
of Local Characteristics. It is the classical method of char-
acteristics, modified to include the collective force. The
latter is treated as though it were a time-independent exter-
nal force during a small time step.

2 DEFINITIONS AND EQUATIONS FOR
LONGITUDINAL MOTION

We consider ultra-relativistic electrons and use nor-
malized, dimensionless phase space variables as
follows: q = z/σz , p = −(E − E0)/σE . Here z is the
distance from the synchronous particle (positive for leading
particles), and E is the energy with mean value E0. The
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quantities σz and σE are the rms bunch length and energy
spread in the low-current equilibrium state.

The phase space distribution function with unit integral
is denoted by f(q, p, θ), where the “time” is θ = ωst, with
ωs the circular synchrotron frequency. The charge density
for N particles is ρ(q, θ) = eN

∫
f(q, p, θ)dp. The collec-

tive force due to the wake field, a functional of f at time θ,
is taken to be F (q, f(θ)) =

∫
W (q − q′)ρ(q′, θ)dq′, where

a positive value of the point source wake potential W cor-
responds to energy gain.

We use wake potentials for the old and new vacuum
chambers that were computed by time-domain electromag-
netic codes. The source for computed fields was a 1mm
Gaussian bunch, not a point source and not extremely short
compared to the nominal bunch length of about 5mm. Also,
some difficult three dimensional structures were treated
crudely. Probably the main shortcoming of the wake po-
tentials is omission or smoothing of field components of
short wave length. These components are most likely to in-
fluence bunches of high current, which are prone to develop
small-scale structure.

We assume that the motion occurs in the linear region of
the r.f. force. In that case the VFP equation is [3]
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where the intensity parameter is I = Ne2/2πνsσE with
synchrotron tune νs. In our normalized coordinates the
damping and diffusion constants are both equal to 2β =
2/ωsτd, with τd the longitudinal damping time.

We integrate equation (1) by the method described in [3],
with a 401 × 401 phase space grid and 1024 time steps
per synchrotron period. After some improvements in the
code we now integrate for 3 damping times in 24 hours,
on 400MHz work stations. All integrations begin with the
Haïssinski equilibrium state, which exists even at very high
currents, even though it is unstable to small perturbations
at such currents.

To verify the code we have used various criteria: in-
variance of the equilibrium at low current; reproduction of
an exact time-dependent solution of the nonlinear Vlasov
equation, constructed from the Haïssinski distribution [3];
reproduction of the analytic solution of the Fokker-Planck
equation for zero wake field; charge conservation; smooth-
ness of the distribution and smallness at the boundary of the
grid. Also, we find solutions that are nearly periodic with
very long period (as much as 3.9 damping times!) This
indicates long-term stability of the algorithm.
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3 PRESENT VACUUM CHAMBER

Simulations for the present vacuum chamber, with com-
parisons to experiment, were reported in [3]. For machine
parameters as in Eq.(36) of [3], the computed equilibrium
state is invariant to high accuracy under the time-domain
integration algorithm, for bunch population N less than
about 1.6 · 1010. At N = 1.64 · 1010 bunch lengthening
and increased energy spread set in. The corresponding ex-
perimental threshold is (1.7±.03)·1010. Runs at somewhat
higher current, (1.74, 1.84) · 1010, show oscillations of σq

or σp with a frequency somewhat smaller than 2ωs, with
asymptotically constant amplitude. The constant amplitude
sets in after a long transient of slowly increasing amplitude,
lasting 2-3 damping times. Beginning at about 2·1010 there
is a somewhat gradual transition to a sawtooth or bursting
mode. This still has fast oscillations near 2ωs, but with an
envelope that varies periodically after 2-3 damping times.
Such a mode at N = 2.99 · 1010 is shown in Figure 1.

Figure 1: Bunch length σq vs. number of synchrotron peri-
ods, current vacuum chamber, N = 2.99 · 1010. The black
band arises by fill-in from the rapid oscillations.

In experiments the constant-amplitude mode is seen up
to N = 2.6 · 1010, at which point there is a relatively
sharp transition to the sawtooth mode. For the case of Fig-
ure 1 the period of the sawtooth envelope oscillations is
0.607τd, as compared to 0.62τd by experiment. The fast
oscillations have frequency 1.816ωs in the simulation and
(1.84 ± .02)ωs by experiment.

At about 3.2 · 1010 the sawtooth mode disappears in the
experiments, and a new frequency of fast oscillations ap-
pears at 2.54ωs. No such thing is observed in the simula-
tion. In fact, the calculated sawtooth mode persists to much
higher current, with the only fast frequency being near 2ω s.

4 PREVIOUS VACUUM CHAMBER

In 1992-93 the vacuum chamber of each damping ring
was replaced by a much smoother chamber. By eliminat-
ing strongly inductive impedance components, one hoped
to raise the threshold current for bunch lengthening and
achieve a smaller bunch length. It turned out that the
threshold was in fact lowered, but SLC performance was
nevertheless improved, because one could get a relatively
short bunch and operate above threshold. It is clear that
we are dealing with two very different types of instabilities

Figure 2: Wake potential W (q) for previous chamber, and
corresponding equilibrium charge distribution (unstable)
for N = 5 · 1010, the latter compared to the Gaussian dis-
tribution for zero wake.

for the old and new rings. The instability of the new ring
is in some sense weaker, and is thought to be associated
with radial mode coupling in an impedance which is now
mainly resistive [2](1995). Since these matters are still not
well understood, it is interesting to compare calculations
for the old and new rings. Experimental results for the old
ring are mostly unpublished, less systematic, and strongly
dependent on r.f. voltage and beam current. We have yet
to make detailed comparisons with the present method of
simulation.

Here we give first results for just one r.f. volt-
age, namely 800 keV. The other relevant parameters are
σE = 0.805MeV , σz = 0.495cm , νs = fs/fr =
0.0117 , fr = 8.47MHz , β = 1/ωsτd = 9.46 · 10−4.

Fig. 2 shows the wake function, and the correspond-
ing equilibrium charge distribution (unstable) at the highest
current we consider, N = 5 · 1010. The potential well dis-
tortion is remarkably large at this current. In agreement
with Ref.[2], we find that this wake potential induces a
large dipole oscillation. In machine operation the dipole
mode is suppressed by Robinson damping. To simulate this
damping we follow [2], adding a term −2〈p〉/(ωsτR) to the
expression for dp/dθ, where 〈p〉 =

∫
pf(q, p, θ)dqdp . We

choose the damping time τR to be the synchrotron period,
but find that considerably larger τR gives about the same
result. This damping is important for stability of our algo-
rithm for long times. It was not necessary in our previous
calculations for the new chamber [3].

Figures 3 through 9 show the normalized r.m.s. en-
ergy spread, σp, versus the number of synchrotron periods,
for increasing current. Of course, the graphs for σ q are
quite similar in appearance. The total time interval of 1380
synchrotron periods corresponds to more than 8 longitudi-
nal damping times (168 periods per damping time), about
twice the typical storage time. The apparent stability of the
numerical integration for such a long time is noteworthy.
Of course, stability is not the same thing as accuracy, and a
fully convincing validation of these results has not yet been
made.

At N = 2 · 1010 the equilibrium distribution is invari-
ant to high accuracy. The threshold for bunch lengthening
and increased energy spread is at about 2.25 · 1010. The
experimental threshold was approximately 3 · 1010. As in-
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dicated in Fig. 4, we find a huge energy spread already at
2.5 · 1010, but it comes and goes with a very long period,
3.7 damping times. The fast oscillations have frequency
close to 2ωs. As the current is increased this effect is more
and more pronounced, until a transition to much different
behavior occurs at 4 · 1010; namely, a large initial spread
evolving to an asymptotic sawtooth mode with lesser am-
plitude. The fast oscillations within the sawtooth have a
frequency of about 3.3ωs.

The period of the sawtooth envelope at 5 · 1010 is about
1/4 of a damping time, in good agreement with the macro-
particle simulation of Ref. [2] at the same current. The
latter was done with a damping time reduced by a factor of
10 from the correct value, however. We find that the quali-
tative behavior of high-current modes depends strongly on
the damping rate. Figure 10 shows our result with a 10-
fold reduction in damping time, over an interval of 3 re-
duced damping times. This disagrees strongly with the re-
sult of [2] on the same interval, which resembled more our
Fig. 9. Although the disagreement is disappointing, it per-
haps serves as a good reminder of the subtlety and compli-
cation of high-current coherent motion. Also, one should
remember that the models of radiation are mathematically
different in the macroparticle and VFP approaches, even if
the underlying physical pictures are similar. In the VFP
model the radiation is spread more uniformly around the
ring.

To analyze the modal structure of the distribution, we
make a Fourier analysis of the charge density ρ(q, θ) [3].
We first make a Fourier transform with respect to q, ob-
taining ρ̂(ω, θ), and fix ω at a typical revolution harmonic
that can be seen in frequency analysis of a BPM signal,
namely 10 GHz. Then we do a periodic Fourier analy-
sis with respect to θ, on the long period of the sawtooth
mode. The result for the power spectrum at N = 5 · 1010

is shown in Fig.11; the abscissa is frequency in units of ωs.
The strong line at the revolution harmonic is suppressed.
The “sextupole” peak centered at 3.3ωs agrees well with
[2] and with experimental experience in which a frequency
near 3 was often seen. At other currents above the saw-
tooth threshold the result is pretty much the same, with
little shift in frequency with current. On the other hand,
below the sawtooth threshold we get a “quadrupole” peak
like that for N = 2.5 · 1010 at 1.85ωs, shown in Fig.11.
Again, there is little dependence on current. The behavior
vs. current is surprising in view of earlier simulations and
experiments, and deserves further study.
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Figure 3: N = 2 · 1010 Figure 4: N = 2.5 · 1010

Figure 5: N = 3 · 1010 Figure 6: N = 3.5 · 1010

Figure 7: N = 4 · 1010 Figure 8: N = 4.5 · 1010

Figure 9: N = 5 · 1010 Figure 10: N = 5 · 1010,
damping time reduced by
factor of 10.

Figure 11: Sidebands of 10GHz revolution harmonic at
N = 5 · 1010 (left) and N = 2.5 · 1010 (right)
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