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Abstract

The strategy for Automated Beam Steering and Shaping
(ABS) in the PS complex is to use theoretical response ma-
trices calculated from an optics database. The main reason
for this is that it enforces a certain understanding of the
machine optics. A drawback is that the validation of such
a matrix can be a lengthy process. However, every time a
correction is made using an ABS program, a partial mea-
surement of the response matrix is effectively performed.
Since the ABS programs are very frequently used, the full
matrices could thus be measured on an almost daily basis,
provided this information is retained. The information can
be used in two ways. Either the program passively logs the
data to be analysed off-line, or the information is directly
fed back to the matrix, which makes the program ’learn’ as
it executes. The data logging provides a powerful machine
debugging tool, since deviations between the measured and
theoretical matrices can be traced back to incorrect opti-
cal parameters. The ’learning’ mode ensures that the cor-
rection will always converge. Implementation details and
simulation results are discussed.

1 INTRODUCTION

Due to the complexity of large accelerators, computer sup-
port is needed for efficient operation. In the PS complex,
software is developed for this purpose within the context of
Automated Beam Steering and Shaping[1] (ABS).

The approach taken is that every relation between ma-
chine parameters and measured quantities can, if suffi-
ciently small corrections are considered, be treated within
the framework of linear perturbation theory. The first order
relation between changes in the parametersc i and changes
in the measured quantitiesmi are given by the response
matrixA (also called the correction matrix), defined as

A · c = m. (1)

This response matrix is in general a function of the parame-
ters. If this matrix is known, optimal corrections can be cal-
culated from the errors in the measured quantities. Rather
than inverting the matrix, which can be numerically unsta-
ble, a special correction algorithm called Micado[2] is used
to calculatec from the measured errorsm. This algorithm
solves the matrix equation approximately, using only a few
of the most effective correctors available.
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The matrix can be obtained in two ways: either by direct
measurement, or as a linearization of a theoretical machine
model. In the PS complex, the second method has been
chosen, since the creation and maintenance of an accurate
theoretical model enforces a thorough understanding of the
machines. However, the way to verify that the theoretical
model correctly describes the machine is usually to mea-
sure the response matrix and compare it to the theoretical
one. This can be a long and cumbersome process.

2 LEARNING CORRECTION SYSTEMS

2.1 ’Passive learning’ - Data Collection

When the ABS programs are used, measurements and sub-
sequent corrections are iterated until the optimum is found.
In the process, a lot of measurement data passes through
the program. Presently, this data is lost once it has been
used to calculate a correction. This is a waste of valuable
information. If the information was retained, enough mea-
sured data could be collected in a typical ABS program
session to reconstruct the entire response matrix. This can
be implemented by a simple log file. Since the program
collects information about the machine, but does not use it,
this could be called a ’passive learning’ mode.

2.2 ’Active learning’ - Direct Feedback

In the current implementation, the ABS programs are static.
Given a certain error, they will always propose the same
correction. This is not a problem as long the iterative cor-
rection converge, but this may not always be the case, for
example in closed orbit corrections if the tune of the ma-
chine is different from the model tune.

The obvious next step from the passive data collection is
to enable the program to analyse the data online and modify
the response matrix accordingly, if it should be found to be
incorrect.

A program in ’active learning’ mode should identify and
retain useful information and use it to reconstruct as much
as possible of the response matrix. The reconstructed parts
should then be substituted into the current response ma-
trix. A calculated matrix could be used in the beginning of
an ABS program session, but it would be gradually trans-
formed into an up-to-date measured matrix. At the end of
the session, the two matrices could be compared in order
to identify differences between the model and the real ma-
chine. Thus, the learning approach is not contrary to the un-
derlying idea of using theoretical matrices, but rather pro-
vides a simple and powerful tool to verify their correctness.
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Figure 1: Schematic structure of the ABS application programs. The dashed line show where modifications are needed.
Since the modifications are almost fully localised to the Mathematica part, they could be implemented easily.

3 PRACTICAL IMPLEMENTATION

The ABS programs have several components[3] (see
Fig. 1). The application program is configured from a
database[4], that also contains the theoretical model of the
machine. The actual computation of corrections, based on
the measured data and the database model, is made in a
Mathematica kernel running as a sub-process to the appli-
cation program. This modular structure makes it very easy
to implement the ideas presented above, since in principle
only the Mathematica code needs to be modified. Data log-
ging can be enabled simply by dumping all measured data
to a flat file for further analysis.

The code for the analysis of the logged data have been
written in Mathematica and could therefore be incorporated
easily in the correction module in order to make it analyse
the data on-line. The data from several corrections can be
summarised as

A · C = M (2)

where each column of the matricesC andM corresponds
to one applied correction. The crucial difference from (1)
is that now the matrixA is the unknown. While the equa-
tion is often under-determined because certain correctors
have not been changed, there is often a sub-system which
is solvable.

The analysis module performs the analysis of this data
in several steps. It first suppresses data that are too noisy.
That is, corrections where the changes made are either zero
or too small to give an effect above the noise level. This is
important for the stability of the solution.

In the second stage it, analyses the remaining data to
see which parts of the response matrix that can be recon-
structed. This is done by studying the properties of the
matrix C. First, the matrix is reduced by removing lin-

early dependent columns. Then, by permutating rows and
columns, the program identifies the largest possible square
sub-matrixC1, such that

C̃ =
(

C1 C2

0 C3

)
. (3)

The corresponding permutated matrix equation

(
A1 A2

) · ( C1 C2

0 C3

)
=

(
M1 M2

)
(4)

can then be solved for

A1 · C1 = M1 (5)

since the columns of the reduced matrix are linearly inde-
pendent and thus the inverse exists.

Having identified the solvable correctors, the program
goes back to the full data set, and selects all measurements
where only these correctors have been used. The result-
ing matrix equation is similar to (5), but in general over-
determined, and can be solved using a least squares fit.

Finally, the calculated columns are substituted into the
previous response matrix.

4 TESTS

The performance of the learning algorithm, as compared to
the standard ABS algorithm based on a static matrix, has
been evaluated using simulations. In each simulation, ini-
tial errors in both the matrix and the corrector settings were
randomly generated, and the performance of the two algo-
rithms studied as a function of the number of iterative cor-
rections made. Measurement noise was also included. Two
examples of such simulations are shown in Figs. 2 and 3. It
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Figure 2: Simulation results for a system of 10 correc-
tors and 10 monitors. The solid line shows the residual
error in percent as a function of number of corrections per-
formed, when using the ’learning’ algorithm. The dashed
line shows the same curve using a static matrix. The bar
chart indicates how many percent of the matrix entries that
have been updated. In this case the initial matrix had large
errors. After an initial excursion, the learning algorithm
converges, whereas the static matrix version does not.

was found that the ’learning’ algorithm always converged
eventually, whereas with a static matrix it often diverged.

It was noted, however, that if the initial matrix error is
very large, the residual error can initially grow significantly
before the learning algorithm starts to converge. In a real
machine this could lead to beam loss, and is thus not ac-
ceptable. This problem, appears mainly when corrections
are made using many correctors. In such a situation, the op-
erator would cancel the correction and make a new attempt
with fewer correctors.

Another experience from the simulations is that the av-
erage number of iterative corrections needed to reconstruct
the full matrix is not much greater than the theoretical min-
imum (which is given by the number of columns in the
matrix). Since the corrections converge very rapidly once
the correct matrix is obtained, this gives an estimate of the
maximum number of corrections needed for convergence.

5 EXTRACTING THE OPTICS
INFORMATION

Just as the response matrix can be calculated from opti-
cal parameters, the optical parameters can under certain
circumstances be deduced from the matrix. For example,
the matrix elements for beam steering in a transfer line are
given by

∆xi =

{√
βiβj sin(µi − µj) if µi > µj ,

0 if µi < µj .
(6)

For such a response matrix ofn correctors andm monitors,
the matrix hasn ·m entries, where roughly half are zero in
case monitors and correctors are evenly distributed along
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Figure 3: Simulation performed and presented as in Fig. 2.
In this case, the initial matrix errors were small. Both algo-
rithms converges, but in the process the learning algorithm
measures the matrix, which can then be compared to the
calculated one.

the line. The matrix can be parametrised in terms of the
value of the beta function atn + m locations, as well as
n+m−1 positions in betatron phase (the phase of the first
element can be arbitrarily chosen).

Since the two numbers scale very differently, when the
matrices are sufficiently large, the resulting system of equa-
tions is over-determined and thus the optical parameters
can be determined.

Therefore, if the measured matrices resulting from each
ABS session are logged, effectively a history of the ma-
chine optics is obtained. This could be useful for example
to study the long term stability of the machine.

6 CONCLUSIONS

By making ABS programs learn from previous corrections,
a faster and more secure convergence can be obtained.

An implementation of such a learning system have been
made in Mathematica, as an extension to the current ABS
Mathematica package. and tested by simulations with very
good results.

By logging the information collected by the program,
statistics on the machine optics, and its stability in time,
is automatically obtained.
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