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Abstract

Strong coupling between the transverse planes of a
particle beam leads to an “equipartition” of the
oscillation energy, including the growth rates in the case
of coherent instability. The aim of this paper is to give a
general formula, which includes linear coupling and
which extends to two dimensions the one-dimensional
results of transverse coherent instabilities. From this
equation, previous results are recovered as expected:
(i) Sacherer’s formula for the coherent modes of
oscillation, (ii) Kohaupt’s formula for the mode coupling
instability, and (iii) the coupled Landau damping
mechanism (transfer of frequency spread), which
includes the sharing of the instability growth rates.
Measurements have been performed in the CERN PS,
which confirm the predicted beneficial effect of coupling
by both frequency spread and chromaticity sharing.

1  INTRODUCTION
Two mechanisms are widely used to damp transverse

coherent instabilities. The first one is Landau damping
through non-linearities, which induce a spread in the
betatron frequencies via the dependence on the
incoherent betatron amplitudes. If the coherent betatron
frequency lies within this spread, then the motion can
lose its coherence, and the beam is stabilised. However,
too strong non-linearities are harmful because they can
create stop-bands. The second method consists in using
an electronic feedback system, which detects and
counteracts the coherent motion. It is shown in this paper
that linear coupling with skew quadrupoles is an
additional (3rd) method that can be used to damp the
transverse coherent motion, especially if the instability
tends to occur only in one of the planes.

2  THEORY

2.1  A General Formula for the Transverse
Coherent Instabilities

In the presence of linear coupling (near the coupling
resonance lQQ

YX =− ), the stability of intense beams
can be discussed using the following determinant [1]
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Here, 
mx

I
,

 and 
my

I
,

 are the horizontal and vertical
dispersion integrals, 

cω  is the coherent frequency to be
determined, ( )yx

x
ˆ,ˆω  and ( )yx

y
ˆ,ˆω  are the transverse

incoherent betatron frequencies of the particles, ( )xf
x

ˆ
0
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and ( )yfy
ˆ

0
 are the uncorrelated distribution functions of

the incoherent betatron amplitudes, 
sω  is the synchrotron

frequency and ...,1,0,1..., −=m  is the head-tail mode
number. Furthermore, ( )lK

0
ˆ  is the lth Fourier coefficient

of the skew gradient ( ) ( )xBpeK x ∂∂= // 00
, with e  the

elementary charge, 0p  the design momentum and 
xB

the horizontal magnetic field, R  is the average radius of
the machine, 0Ω  is the average revolution frequency of
the particles, 00,00,0 Ω= yxyx Qω  are the unperturbed
betatron frequencies, yx

mm
,
,ω∆  are the complex betatron

frequency shifts given by the Sacherer’s formula (4) [2],
1−=j  is the imaginary unit, β  and γ  are the

relativistic velocity and mass factors, ( )π2/0Ω= eNI bb

is the current in one bunch, 0m  is the proton rest mass,
L  is the total bunch length (in metres), yxZ ,  are the
coupling impedances, ( ) syx

yx
k mQk ωω +Ω+= 00,0

,  with
∞+≤≤−∞ k , ( ) 00,0, /

,
Ω= yxyx Q

yx
ηξωξ  are the transverse

chromatic frequencies, with ( )( )0,00,, // yxyxyx QppdQd=ξ
the chromaticities, and 22 −− −= γγη tr  is the slippage factor.

2.2 Situation in the Absence of Linear Coupling

In the absence of linear coupling, the determinant of
Eq. (1) is the product of the two one-dimensional
determinants. It is known from the one-dimensional
theory that both determinants are then equal to zero.
Below the mode coupling threshold, the coupling terms
between modes m and m+1 are neglected, and the
following dispersion equations for each mode m are
obtained, x

mmmxI ,
1
, ω∆=−  and y

mmmyI ,
1
, ω∆=− . In the absence of

Landau damping, the stability condition for the mth
mode is ( ) 0Im ,

, ≥∆ yx
mmω , where ( )Im  stands for imaginary

part [2]. In the presence of Landau damping, a simplified
stability criterion, which is drawn from dispersion
relation analysis considering “elliptical” betatron
frequency distributions, is yx

mmx,y
,
,2 ωω ∆≥∆ , where yx ,ω∆

are the half widths at the bottom of the spectra [3]. The
stability criterion against the transverse mode coupling
instability, neglecting Landau damping, is given by

2/,
,

,
1,1

,
1,

yx
mm

yx
mms

yx
mm ωωωω ∆−∆+≤∆ +++   [4,5].

2.3  Situation in the Absence of Mode Coupling

In the presence of both linear coupling and frequency
spreads, but neglecting the mode coupling terms, the
following equation is obtained for each mode m [6,7]
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In the absence of external non-linearities, the
necessary condition for the stability of the mth mode is

,0eqeq ≤+ m

y

m

x VV (10)

where ( )yx
mm

m
yxV ,

,,eq Im ω∆−= . If Eq. (10) is true, then it is
possible to stabilise this mode by increasing the skew
gradient and/or by working closer to the coupling
resonance lQQ YX

=− . The stabilising values of the
modulus of the lth Fourier coefficient of the skew
gradient are given by
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where ( ) 0,eq0,0, / Ω+= m
yxyxYX UQ ω  are the horizontal and

vertical coherent tunes in the presence of wake fields
( ( )yx

mm
m

yxU ,
,,eq Re ω∆= , where ( )Re  stands for real part), but

in the absence of coupling. Furthermore, in the case of
coupled-bunch instabilities of M bunches, Mknk yx

′+= ,

in Eq. (6) with ∞+≤′≤−∞ k , and the mode numbers are
related by lnn yx −= .

In the presence of external non-linearities, in addition
to the transfer of instability damping, there can also be a
partition of Landau damping. This has been assessed in
Refs. [6] and [7], using two typical frequency
distributions, Lorentzian and “elliptical”, knowing that
they are limiting cases, modeling spectra with and
without important tails, respectively. In the case of
Lorentzian distributions, the necessary condition for the
stability of the mth mode and the stability criterion are
given by Eqs. (10) and (11), replacing m

yxV ,eq  by

yx
m

yxV ,,eq δω− , where yx ,δω  are the half widths at half
maximum of the spectra. In the case of elliptical
distributions, the situation is more involved. If 

XQ  is
“far” from lQY

+ , then the necessary condition for the
stability of the mth mode and the stability criterion are
given by Eqs. (10) and (11). There is no transfer of
Landau damping since the coherent tunes are too far
from each other to share the stabilising spreads. If 

XQ  is
“near” lQY

+ , then in addition to the sharing of the
instability growth rates, there is also a transfer of Landau
damping for “optimum” coupling. The necessary
condition for stability is
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If Eq. (12) is fulfilled, then the stabilising values of the
coupling coefficient may be approximated by
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Notice that too strong a coupling is detrimental for the
coupled Landau damping mechanism, since it shifts the
coherent tunes outside the spectra and thus prevents
Landau damping.

Notice also that in the absence of instabilities, the
difference from the tunes of the two normal modes −+,

Q

is given by
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This is the known result of linear coupling in the
simplified case of the smooth approximation [8].

2.4  Situation in the Presence of both Linear
Coupling and Mode Coupling

Taking into account both mode coupling and linear
coupling, but neglecting Landau damping, Eq. (1) leads
to a fourth-order equation, which can be written in the
following form, with x

mmsxmx
m

,0, ωωωω ∆++=  and
y

mmsymy ml
,00, ωωωω ∆++Ω+= ,

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( )
( ) .

2
4

ˆ

4

ˆ

1,1,

00

4

0

4
2

0

1,1,,,

00

4
0

4
2

02

1,1,,

2

1,1,,



















∆∆−
Ω

−

−−+−−

×
Ω

=∆+−−

×∆+−−

++

++

++

++

y

mm

x

mm

yx

mycmxcmycmxc

yx

y

mmmycmyc

x

mmmxcmxc

RlK

RlK

ωω
ωω

ωωωωωωωω

ωω
ωωωωω

ωωωωω

(15)

The necessary condition for stability is found to be
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If Eq. (16) is fulfilled, then it is possible to stabilise the
beam by linear coupling. Beam stability is obtained
above a certain threshold for the coupling strength,
whose value is found from Eq. (15) by increasing the
coupling coefficient until the imaginary parts of the roots
disappear.

 3  EXPERIMENTS
Two series of measurement have been performed in

the PS to verify the results predicted by this theory. The
first one was made with a high-intensity bunched proton
beam to illustrate the transfer of Landau damping. The
predicted beneficial effect of coupling on Landau
damping has been confirmed, and a factor 7 in the
octupole current has been gained, which reduces the
harmful external non-linearities [9]. The second
experiment was made using the PS beam for the future
LHC to illustrate the transfer of the instability growth
rates (which, below the mode coupling threshold, depend
critically on the chromaticities). The conclusion of this
experiment is that the PS beam for LHC can be
stabilised by linear coupling only [10].

 4  CONCLUSION
The theory of transverse coherent instabilities has

been extended to include linear coupling. Two beneficial
effects have been emphasised: a transfer of the
instability growth rates and a transfer of the stabilising
frequency spreads. These results have been verified
experimentally in the PS. They also explain why many
high-intensity accelerators and colliders work best close
to a coupling resonance lQQ

YX =− . They can be used
to find optimum values for the transverse tunes, the skew
quadrupole and octupole currents, and the
chromaticities.
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