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Abstract

The complex resistive wall impedance generates a non-
uniform transverse focussing along a bunch train. The
effect was first computed by V. Balbekov [1] for the UNK
machine. The origin of the effect is discussed and then
quantified for bunch trains in the CERN SPS and future
LHC. Then the transverse resistive wall instability of
bunch trains is examined and compared with the well
known case of the uniformly filled machine. It is shown
that the frequency of the most unstable mode is centred
around the inverse of the length of the bunch train with a
growth rate that is larger than the one expected from linear
extrapolation of a full machine.

1  INTRODUCTION
V. I. Balbekov has computed the tune shift along a

uniform train or batch of proton bunches for the high
intensity UNK machine [1]. The origin of this effect is
the complex transverse resistive wall impedance. It is
computed here both for the SPS (fixed target and LHC
beam operation) and for the LHC. It modifies the stability
situation of the bunch train when compared to a machine
which is uniformly filled. In the latter part of the paper it
is shown that the driving force of the resistive wall
instability depends  critically on the batch length for
constant local density.

2  THE ORIGIN OF THE TUNE
GRADIENT ALONG A BUNCH TRAIN
Consider a train of identical bunches. The tune of the

train and of the individual bunches will be modified by the
so-called Laslett tune shifts [2]. Let us examine the
various types of these shifts and their ability to impose a
tune gradient along a batch or a train of bunches.

The direct tune shift acts on each bunch. The forces on
each charged particle emanate from neighbouring charges
and currents in the bunch. The force and the source are in
perfect phase since there is no time delay between them.
The effect will be the same on all bunches since they are
assumed to be identical, hence it does not contribute to a
tune gradient.

The electrostatic tune shifts are driven by the images
created by the wall conductor and the electric field of the
beam. As in the previous case there is no delay between
the force and its source. The argument is valid both for the
incoherent and the coherent electrostatic effect. Hence the
electro-static tune shift does not contribute to a tune
gradient across a uniform bunch train.

Two cases have to be considered  regarding the magnetic
tune shifts. The first one is produced by the image created

by a magnetic surface. Only the DC magnetic field is
involved, hence it acts on the bunch train in a uniform
way and does not contribute to a tune gradient.

The second case concerns the image currents that drive
the incoherent and coherent tune shifts. Again there is no
delay  between the source (beam and image current) and
the force for the incoherent effect. Hence all bunches are
perturbed in the same way such that the effect is uniform
along the bunch. The same is no longer true for the
coherent effect. A differential image current is set up that
drives a wall voltage via the complex wall impedance
(skin effect). The complex impedance causes a time delay
between the source (the image current which is in phase
with the beam current) and the electric field in the wall
impedance that drives the tune shift. Consequently the
focusing force will vary with time along the bunch train.
The effect that was just described is nothing else but the
resistive wall effect.

3  COMPUTATION OF THE TUNE
GRADIENT ALONG A BUNCH TRAIN

The resistive wall impedance is proportional to j ω .

For convenience it is assumed that the thickness of the
wall conductor is larger than the skindepth. The bunch
train will be simply represented by a uniform current
impulse of length τ. The bunch structure can be neglected
since the resistive wall impedance falls off quickly with
frequency from the lowest frequencies onwards. The
revolution time of the machine is T = 2π/Ω and Ω  is the
angular revolution frequency. The spectrum of a uniform
bunch train can be written as :
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which assumes a charge in the bunch train proportional to
its length τ . The (de)focusing force will be proportional
to the imaginary part of (only imaginary impedance
causes a real tune shift) :
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The summation is taken over the fundamental betatron
frequency and its harmonics Ωβ=(n-Q)Ω where Q is the
transverse tune.

Fig 1 shows two examples for different bunch train
length. The time scale t=0 starts in the middle of the
bunch train for convenience. The vertical scale is arbitrary
but identical for the two plots. The time scale is for the
LHC ( T = 2π/Ω = 89 µs). The tune spread in the bunch
train increases to a maximum for a length equal to half
the circumference of the machine and decreases again when
the whole machine gets filled progressively. The
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evolution of the spread ∆q as a function of the fraction of
the machine circumference τ/T occupied by the trains is
shown in Fig 2.
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Figure 1: Tune evolution across a bunch train, top: train
(heavy line) occupies τ/T=1/12 of circumference, bottom :
train occupies τ/T =1/2 of circumference
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Figure 2: Tune spread in bunch train versus fraction of
machine circumference τ/T occupied by the beam.

The normalising factor qmax is the tune shift induced by
the imaginary part of the resistive wall for a full machine
but with the same local density as the bunch train.

4  APPLICATION TO SPS AND LHC
The tune shift for a total beam current iB , equal to the

local beam current of the bunch train, is given by :
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where Z⊥  is the (imaginary part) transverse impedance, R

the machine radius  and E the beam energy. Table 1
summarises the effect of the tune gradient caused by the
resistive wall in the SPS and the LHC for various bunch
train situations.

Table 1: Vertical tune spread in beam batches for various
situations in the SPS and the LHC.

iB τ /T Z⊥ /j E/e qmax ∆q

PS A MΩ /m GV 10-3 10-3

ixed target 0.27 1/2 200 14 13 11.7
 batch 0.67 1/12 " 26 17 7.8
 batch " 1/6 " " " 11
 batch " 1/4 " " " 13
HC
 batch " 1/12 52 450 0.46 0.2
 batch " 1/2 " " " 0.4
1.7 batch " 11.7 " " " 0.114
1.7 batch " 11.7 116 7000 0.067 0.016

It may be useful to compare the magnitude of this effect
with the direct space charge tune shift which plays an
important role both in the SPS and the LHC. The direct
space charge tune shift can be written as [2]:
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The ratio of the tune shifts given by Eq. 3 and 4 is :
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where Z0 is the impedance of free space, εy the normalised
transverse emittance, γ the relativistic factor, ε0 the
Laslett coefficient, tbb the bunch spacing, σt  the rms.
bunch length and ib  the average bunch current. The tune

shift ratio in the SPS for nominal LHC type beam
parameters is 0.45 while it is 0.3 in the LHC, both at
injection. The tune spread of a bunch train as a whole is
equal to the tune spread of its constituent bunches
augmented by tune differences between them. Clearly, the
tune gradient along the LHC batches is a non-trivial
component of the tune spread of a batch, especially for the
leading one, which helps slightly for stability but it
reduces the decoherence time which makes the transverse
emittance conservation a more difficult task.

5  TRANSVERSE STABILITY OF BUNCH
TRAINS

The beam envelope spectrum of a bunch train that
occupies the full circumference consists of a single DC
component. It couples with the lowest slow wave mode
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and drives the transverse resistive wall instability. The
situation for a partially filled machine is very different.
The resistive wall impedance is proportional to a factor
(see also above) that is called z(ω):

z jω ω( ) = . (6)

The basic bunch train envelope spectrum is given by Eq.
2. The frequencies ω to be considered are nΩ , where n
takes positive and negative integer values. Notice that for
τ = T, only the DC component is different from zero. The
instability will set up a coupled bunch oscillation in the
bunch train. The central angular frequency of this
oscillation is ωi=(n-Q)Ω. The spectrum of the oscillation
is simply the basic bunch train spectrum shifted by ωi:
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Another way of describing the phenomenon is to say
that the instability drives a higher mode of the bunch train
spectrum. The driving force of the instability can be
derived from the convolution of z(ω) and Bi(ω). The
frequency ωi is such that the convolution maximises the
level of anti-damping, considering the fact that positive
frequencies (fast waves) are damped and negative
frequencies (slow waves) are anti-damped. Hence, the
maximum of the real part of following function yields ωi:
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A plot of Eq. 8 (real part) is shown in Fig 3 for a full
machine (lower curve) and a partially filled machine (upper
curve).
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Figure 3 : Strength of instability driving term and
frequency of most unstable mode for a full machine and
for a bunch train with the same charge packed in 1/4 of
the circumference.

The single spectral line of a full machine is shifted at
the lowest slow wave mode and yields the frequency of the
instability. The spectrum of a partially filled machine is
much wider and contains both fast (damped) and slow
(anti-damped) waves. The situation resembles in some
way single bunch head-tail modes apart from the fact that

chromaticity shifts the single bunch mode spectrum and
modifies the instability driving term. It can clearly be
seen that the driving force for the bunch train is larger
than for the uniform beam with the same charge, and that
it occurs, in this particular case, at a mode n-Q  around -3
and not close to 0. The frequency and the instability
driving force will change progressively when a machine is
filled with a sequence of identical batches. Fig 4 shows
the relative driving force and the frequency of the most
unstable mode for constant local beam density as a
function τ/T. It turns out that the frequency of the most
unstable mode is about 1/τ.
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Figure 4:  Frequency and relative driving force of
resistive wall instability for a partially filled machine.

6  CONCLUSIONS
The most unstable mode of the resistive wall

instability of a beam in a machine that is being filled
with a sequence of batches is centred around a frequency
approximately given by f = 1/τ , i.e. the inverse of the
length of the bunch train. The driving force increases
more than linearly with the total charge in a train. Further
more it is accompanied by an increase in tune spread due
to the complex nature of the skin effect impedance. This
effect is not negligible since it culminates at 45% of the
space charge tune shift (the main contributor to the tune
spread)  in the SPS and at 30% in the LHC for bunch
trains of nominal bunch intensity at injection energy.
Landau damping is slightly better but its benefit is lost
by the reduction of the decoherence time. Consequently
the requirements on the transverse feedback are enhanced
in view of the conservation of the transverse emittance
especially for the leading batches of an injection sequence.
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