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1 INTRODUCTION 
 

   Problem of Pierce instability development (see [1-4] ) is 
important in problem of transporting of high-energy ion 
beams neutralised by electrons. Also it is actual in gas-
discharge sources of ions. In the latter case the ions are low-
energy. The Pierce instability is also important in plasma 
lens for ion beam focusing (see [5-7] ). In the first case the 
electrons are injected together with ions for neutralising 
their space charge. In the second case electrons are 
generated in discharge together with ions. In the third case 
the electron cloud is created externally or selfconsistently 
by ion beam and provides of ion beam focusing. In paper 
[8] it has been shown that ions with zero initial and with 
nonzero initial velocities effect in different ways on 
threshold of Pierce instability development. While high-
energy ions widen the stable region in parameter space. But 
low-energy ions lead to without threshold instability 
development. In this paper the physical reason of different 
ion effects is considered.  
   We consider the most unstable perturbation at above 
threshold value  π  of Pierce parameter α≡Lωp/Voe. Here  ωp 
is the plasma frequency of electrons,  Voe is the injection 
electron velocity,  L is the system  length. Namely, we 
consider the hump of electric potential  ϕ(z,t). The electric 
potential is maximum one inside a system and equals zero 
on its boundaries  ϕ(0)=ϕ(L)=0. We take into account the 
finite value of ion mass. There are two cases for injection 
ion velocity  Voi . We investigate the case of a high-energy 
ions  Voi ≠0  as well as low-energy ions  Voi =0. In the 
second case we take into account the finite thermal velocity 
of ions. In the first case the ions are injected in a system on 
the same boundary as electrons. In the second case a half of 
ions with positive velocities  V > 0 are injected from the 
same boundary, as the electrons, and half of ions with 
negative velocities  V < 0 are injected with the opposite 
boundary. 

 
2 STATIONARY FIELD DISTRIBUTION IN 
THE PIERCE DIODE WITH TAKING INTO 

ACCOUNT THE ION MOBILITY 
 
   We consider the quasistationary distribution of electric 
potential  ϕ(z,t)  in the system with taking into account the 
ion mobility. From equations of continuity and motion of 
particles expressions for densities of electrons  ne , high-
energy  nih  and low-energy ions  niL follow: 

 
ne=no/(1+2eϕ/meVoe

2)1/2,  nih=no/(1-2eϕ/miVoi
2)1/2,  

niL=noexp(-eϕ/Ti)    (1) 
 
Ti is the temperature of low-energy ions, Voi is the 
injection velocity of high-energy ions;  no is the particle 
density on the boundary of injection. From (1) one can 
see that the electron dynamics in the field of 
perturbation leads to formation of noncompensated 
volume positive charge in the system 
 

δn= no[1-1/(1+2eϕ/meVoe
2)1/2] ≈  

≈no(eϕ/meVoe
2)[1-1.5(eϕ/meVoe

2)]   (2) 
 
From (1) it also follows that  
 

δnih≈ no(eϕ/miVoi
2)[1+1.5(eϕ/miVoi

2)]  (3) 
 
dynamics of high-energy ions leads to increase of this 
noncompensated positive charge, because the ions slow 
inside a system. The nonlinearity reduces 
noncompensated positive charge at  β≡ meVoe

2/miVoi
2 

<1 and increases it at  β>1. Also one can show that the 
nonlinearity, determined by trapped electrons (in the 
field of perturbation), reduces noncompensated positive 
charge. Frm (1) one can see also that the contribution in 
noncompensated charge by low-energy ions is opposite 
to the contribution of high-energy ions. Namely, the 
low-energy ions lead to reduction of noncompensated 
charge 
 

δniL≈ -no(eϕ/Ti)[1-(eϕ/2Ti)]   (4) 
 
   From equations of continuity and motion of electrons, 
high-energy and low-energy ions one can obtain that 
the nonstationary terms in these equations reduce the 
noncompensated positive charge 
 

∂z ∆ne ≈ 2noe∂tϕ/meVoe
3 , ∂z∆nih ≈ -2noe∂tϕ/miVoi

3 ,  
∂2

z∆niL ≈ -nomie∂2
tϕ/T2

i  
 
Here  ∆ne , ∆nih , ∆niL are contributions of 
nonstationary terms into the perturbations of densities 
of electrons, high-energy and low-energy ions,  ∂tϕ= 
γϕ, γ is the growth rate of the perturbation amplitude. 
   Substituting (1) in the Poisson’s equation and using 
normalisation  ne and ni  on  no , t on ωpe , z  on  Voe/ωpe 
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, ϕ  on  meVoe
2/e , φ=eϕ/meVoe

2 , x=zωpe/Voe , one can derive 
the equation for spatial distribution of potential  
 

(∂φ/∂x)2 = (1+2φ)1/2 - (1+2φo)1/2 - 
- [(1-2φβ)1/2 - (1-2φoβ)1/2]/β   (5) 

 
β = meVoe

2/miVoi
2 is universal parameter, determining the 

system behaviour [8], and is the relation of kinetic energies 
of electrons and ions.  
   Similarly (5) one can derive the equation for spatial 
distribution of potential for the case of low-energy ions 
 

(∂φ/∂x)2 = (1+2φ)1/2 - (1+2φo)1/2 + 
+ [exp(-φη)-exp(-φoη)]/η    (6) 

 
η= meVoe

2/Ti . In the case of small amplitudes the 
contribution of  mobility of high-energy ions is reduced to 
multiplication of a right member in (5) on a factor  (1+β). 
Influence mobility of low-energy ions is reduced to that the 
equation (6) does not have quasistationary solutions, 
because  η>>1. Thus, as earlier was shown, the Pierce 
instability is developed without threshold in the case of low-
energy ions. 
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