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Abstract

This paper describes the simulation of the global orbit feed-
back system using the singular value decomposition (SVD)
method, the error minimization method, and the neural
network method. Instead of facing unacceptable correc-
tion result raised occasionally in the matrix inversion, we
choose the error minimization method for the global or-
bit feedback. This method provides minimum orbit errors
while avoiding unacceptable corrections, and keeps the or-
bit within the dynamic aperture of the storage ring. The
simulation shows that a selection of BPMs is very sensi-
tive in the reduction of rms orbit distortions, and the ran-
dom choice gives better results than any other cases. Espe-
cially, the most effective combination is the randomly se-
lected BPMs and the equal number of correctors located in
high βx region. In a good case, we can reduce the orbit dis-
tortion by an order of magnitude. For the correction of the
orbit drift, the neural network method gives less fluctuated
orbits than the error minimization method.

1 INTRODUCTION

A long-term drift of the closed orbit is routinely observed
in the PLS. Between the beam injections in every 12 hours,
the closed orbit is drifted to 40 ∼ 100 µm. Since the hor-
izontal beam size is about 200 µm, this drift corresponds
to 20% ∼ 50% of the beam size, which needs to be cor-
rected to less than 10%. In order to cure this long-term
drift, we need a feedback system which can be achieved
without the modification of corrector power supplies and
expensive DSPs and realtime hardware [1].

2 THEORY

The response matrix R can be obtained from measure-
ments by reading beam position changes at BPMs while
varying the strengths of the correctors by following rela-
tion:

|�x〉 = R |�k〉 , (1)

where |�x〉 is the change of the beam position at the cor-
responding BPM due to the corrector strength |�k〉. If we
consider the change of the beam position as the difference
between the reference orbit |xr〉 and the current measured
orbit |xm〉, the change is

|�x〉 = |xr〉 − |xm〉 . (2)

In order to bring the orbit to the reference one, we need to
calculate |�k〉 such as

|�k〉 = R−1 |�x〉 . (3)

2.1 Sigular Value Decomposition (SVD)

In the conventional singular value decomposition (SVD)
method used in the global orbit feedback system, one can
get |�k〉 from eq. (3) for a given set of |�x〉 by using SVD
algorithm in obtaining R−1. However, some elements of
|�k〉 obtained in this way may become larger, and the cor-
rected beam orbit is beyond the dynamic aperture. Even,
in the worst case, the strength change of the corrector be-
comes beyond the capacity of the corrector power supply.
This is mainly due to the singularity of R, which is origi-
nated from the small eigenvalue of the eigen corrector (with
corresponding eigen BPM) in the transformed space. This
eigen corrector (with corresponding eigen BPM) is not ef-
fective in the global orbit correction, and it is called the de-
coupled channel. When this situation is happened, one can
simply remove the decoupled channel from the calculation.
In this way, we can avoid the difficulty from the singular-
ity. However, if there are many decoupled channels, the
correction efficiency will be reduced significantly.

2.2 Error Minimization Method

When the dimension of R is larger, the ill-posedness [2] of
the matrix equation eq. (3) is increased, and R is more vul-
nerable to become a singular matrix. A general approach
to solve the singular matrix is the regularization method
[2] which is depend on the trial-and-error search to find the
best result by a control parameter. However, the choice of
the control parameter is not systematic and the result is very
sensitive to the choice of the parameter.

Our method is to minimize ‖R |�k〉 − |�x〉‖ in the
range of corrector power supplies to obtain |�k〉. The con-
jugate gradient method in multi-dimensions [3] is used in
the minimization procedure such as

|�k〉 = min
{|�k〉 ∣

∣ ‖R |�k〉 − |�x0〉‖
}

. (4)

Because of the nature in the error minimization method, it
takes 4 ∼ 8 times more computing time to find the mini-
mum than the SVD or the regularization method based on
our experiences. However, there is a significant effort to
find the solution by the trial-and-error search in the regu-
larization method even though single calculation takes less
computing time. Similarly, the decoupled channel is not
determined systematically in the SVD by single calcula-
tion. By counting this extra effort in searching correct so-
lutions, the straightforwardness of the error minimization
process, and the faster computing power in recently avail-
able computers, an order of magnitude longer computation
in the error minimization is still comparable to the SVD or
the regularization method.
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Figure 1: RMS Reduction, (a) horizontal direction, er-
ror minimization : 0.10465 ± 0.00583, neural networks :
0.59386 ± 0.05804, (b) vertical direction, error minimiza-
tion : 0.12097 ± 0.01025, neural networks : 0.51641 ±
0.02297

2.3 Neural Network

The neural network is a network of perceptrons with one
or more layers. A perceptron has a simple structure that
generates an output signal when the sum of input signals
reaches the threshold. When perceptrons form a network
and there is a suitable synoptic weight between each per-
ceptron, the network generates a characteristic output sig-
nal pattern for the specific pattern of input signals. In order
to train the neural network, we need a training set which
consists of examples to be learned. A common training
scenario is the supervised learning that is a training set
with most suitable synoptic weights determined by the back
propagation algorithm for given input patterns.

For the global feedback system, we can make the train-
ing set from the strength changes of correctors and corre-
sponding orbit distortions. Then, the learned neural net-
work uses this input pattern to generate the output pattern
that is a set of strength changes for correctors. Thus, the
feedback system changes the strength of correctors accord-
ingly, and the inverse orbit distortion generated by the neu-
ral network cancels the actual orbit distortion.

3 SIMULATION AND RESULTS

3.1 Error Minimization Method

In order to determine how much the orbit feedback sys-
tem is effective, we first generate the orbit distortion by
changing the strengths of non-feedback correctors ran-
domly within ±0.1 mrad by MAD. The number of non-
feedback correctors is also randomly selected from 4 to 24.

We repeat this process for 30 different sets of orbit dis-
tortions in each direction and obtain reductions of orbit dis-
tortions after the feedback. Fig. 1 shows the rms orbit dis-
tortion before and after the feedback. It shows that the rms
orbit distortion after the orbit feedback is reduced signif-
icantly than one before the feedback is applied. We can
determine the effectiveness of the orbit feedback by defin-
ing the reduction rate of the orbit distortion as the ratio of
the reduced rms orbit distortion by feedback with the rms
orbit distortion before feedback. Actually, the reduction

Table 1: RMS reduction done by the error minimization
method (horizontal)

BPM Index Corrector Index RMS Reduction

Random Choice 2/cell 1, 2 (high βx) 0.12744

Random Choice 3/cell 1, 2 (high βx) 0.73252

Random Choice 3/cell 1, 2, 3 (high βx) 0.10465

Random Choice 4/cell 1, 2, 3 (high βx) 0.39468

Random Choice 4/cell 1, 2, 3, 6 (high βx) 0.10408

1, 2, 3, 4 1, 2, 3 (high βx) 0.32483

1, 2, 3, 4 1,2,3/1,2,6 (high βx) 0.34521

1, 2, 5, 7 (high βx) 1, 2, 6 (high βx) 0.43597

1, 2, 5, 7 (high βx) 1,2,3/1,2,6 (high βx) 0.37200

1, 2, 3, 4 1, 3, 5 0.18970

1, 2, 3, 4 2, 4, 6 0.16398

Table 2: RMS reduction done by the error minimization
method (vertical)

BPM Index Corrector Index RMS Reduction

Random Choice 2/cell 3, 6 (high βy) 0.12364

Random Choice 3/cell 3, 6 (high βy) 0.30949

Random Choice 3/cell 3, 6, 1 (high βy) 0.12097

Random Choice 4/cell 3, 6, 1 (high βy) 0.43564

Random Choice 4/cell 3, 6, 1, 2 (high βy) 0.12212

5, 6, 7 (high βy) 1, 4, 5 (high βy) 0.15375

5, 6, 7 (high βy) 1, 4 (high βy) 0.54967

5, 6 (high βy) 1, 4 (high βy) 0.14541

3, 4, 8, 1 (low βy) 3, 6, 1 (low βy) 0.15443

3, 4, 8 (low βy) 3, 6 (low βy) 0.27259

3, 4 (low βy) 3, 6 (low βy) 0.13380

rate is a slope of the linear fitting in Fig. 1. While we are
selecting a set of BPMs and correctors used in the feedback
system, it is observed that the rms orbit distortion after the
feedback is highly depended on the selection of BPMs and
correctors, but not on the amount of rms distortion. In order
to find the most suitable combination of BPMs and correc-
tors, we repeat this procedure for various combinations of
BPMs and correctors as listed in Tables 1 and 2. It shows
that a selection of BPMs is very sensitive in the reduction
of rms orbit distortions, and the random choice gives better
results than any other cases. Especially, the most effective
combination is the randomly selected BPMs and the equal
number of correctors located in high βx region. In a good
case, we can reduce the orbit distortion by an order of mag-
nitude. Therefore, for the PLS global orbit system, we will
use 3 randomly selected BPMs and three correctors (C1,
C2, and C3) for the horizontal direction, and 3 randomly
selected BPMs and three correctors (C1, C3, and C6) for
the vertical direction.
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3.2 Neural Network

There are 36 nodes in the input layer, 36 nodes in the hid-
den layer, and 4 nodes in the output layer for the neural
network simulation. It means that there are 36 BPMs to
read the orbit change and four correctors to correct this or-
bit change. These layers are linked with the topology of the
forward direction full connection. The identity function is
used as the output filter for each node because the PLS lat-
tice used in this MAD simulation is basically linear and the
orbit change would be linear accordingly. The neural net-
work topology is generated by Stuttgart Neural Network
Simulator (SNNS ver 4.1) and the learning of the neural
network is also done by the same simulator [4]. The neu-
ral network is learned by the back propagation algorithm
for learning patterns which was generated by MAD for the
PLS lattice. The iteration used in the learning procedure is
included in SNNS.

In the next place, we generate the orbit distortion by
changing the strengths of non- feedback correctors ran-
domly within ±0.1 mrad by MAD. The number of non-
feedback correctors is again randomly selected from 4 to
24. In order to cancel this orbit distortion, we use the in-
verse orbit distortion as the input values of the neural net-
work. Then, the learned neural network gives the strength
changes for four correctors. In order to determine the rms
reduction, we generate 30 different orbit distortions ob-
tained randomly, and apply the neural network technique
to correct them. The scattered data plot for rms orbit dis-
tortions before and after the feedback is shown in Fig. 1.
The reduction rate by the neural network is about 0.594,
which is maximum 6 times larger than the one from the
error minimization method.

3.3 Orbit Drift

In order to simulate the orbit drift, we select four correctors
randomly and change their strengths gradually in time. We
choose the magnitude of the drift orbit is within ±40µm,
and the corresponding orbit changes obtained by MAD are
shown in Fig. 2. In this figure, it is clear that we can move
the closed orbit to the center against the orbit drift by the
error minimization method, but a little fluctuation is ob-
served. This is less than ± 5 µm, which is acceptable be-
cause it is less than 5% of the PLS beam size (∼ 200 µm).
For the correction of the orbit drift done by the neural net-
work, the result is shown in the same figure. The correc-
tions done by the neural network and the error minimiza-
tion method are quite agreeable. Unlike the error minimiza-
tion method, there is little fluctuation during the correction
of the orbit drift by the neural network. However, small
amount of drift in the opposite direction is still remained
due to poor learning of the neural network.

4 CONCLUSION

We have simulated the global orbit feedback by using the
error minimization method in order to avoid unacceptable
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Figure 2: The orbit drift and its cure simulated by the global
orbit feedback. (a) horizontal direction, (b) vertical direc-
tion.

correction results raised occasionally in the matrix inver-
sion. The simulation shows that a selection of BPMs is
very sensitive in the reduction of rms orbit distortions, and
the random choice gives better results than any other cases.
Especially, the most effective combination is the randomly
selected BPMs and the equal number of correctors located
in high βx region. In a good case, we can reduce the or-
bit distortion by an order of magnitude. Therefore, in the
development of the PLS global orbit system, we will use
3 randomly selected BPMs and three correctors (C1, C2,
and C3) for the horizontal direction, and 3 randomly se-
lected BPMs and three correctors (C1, C3, and C6) for the
vertical direction.

In order to compare the effectiveness of the neural net-
work method, a neural network is trained by the learning
algorithm using the learning data set. For the correction of
the orbit drift, the neural network method gives less fluctu-
ated orbits than the error minimization method.

Although the simulation result shows that the neural net-
work method does not give better reduction rates than the
error minimization method, the latter method is based on
the linear property of the lattice. Since the actual storage
ring is no longer linear due to sextupoles and various errors,
the actual reduction rate by the error minimization method
will be degraded. However, the neural network learned
from the real orbit distortion patterns from the storage ring
can contain the nonlinear properties, the reduction rate ob-
tained by the neural network will become more realistic.
Thus, we will keep the two methods in the realization of
the global orbit feedback system in the PLS in near future.
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