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Abstract

Precision accelerator models are increasingly important for
achieving the design performance of colliders and light
sources. An overview is given of procedures and tech-
niques for measuring various parameters of the acceler-
ator model, including the beta function, betatron phase,
mismatch, nonlinear detuning, resonance-driving terms,
impedance, linear coupling, dispersion, linear and non-
linear chromaticity, momentum compaction, and rf volt-
age. The complementary model-independent analysis is
also discussed. More details and further information may
be found in Ref. [1].

1 BETATRON TUNE AND PHASE
The integer part of the betatron tune, Q = 1

2π

∮
ds
β(s) , may

be inferred from a betatron oscillation at injection or the
change in closed orbit induced by a steering corrector.

Figure 1: Multi-turn orbit measurement for the motion
of the 500th bunch in a train of 1760 bunches at PEP-II.
Shown are horizontal BPM orbit readings as a function of
turn number: BPM in a dispersive region [left]; BPM in a
non-dispersive region [right]. The slow oscillation in the
left picture corresponds to energy (or synchrotron) oscilla-
tions. The fast oscillation is the betatron motion. (Courtesy
U. Wienands, J. Seeman et al, 1998.)

After exciting transverse beam motion, the beam posi-
tion x can be measured on N consecutive turns, as is shown
in Fig. 1. The fractional part of the betatron tune then cor-
responds to the frequency of the largest ψ in the Fourier
expansion x(n) =

∑N
j=1 ψ(Qj) exp(2πinQj), with an

error of the order |δQ| ≤ 1
2N .

The resolution is improved by interpolating the shape of
the Fourier spectrum around the main peak [2]. For N �
1, the interpolated tune QFint is [2, 3]:

QFint ≈ k

N
+

1
N

arctan
( |ψ(Qk+1)|
|ψ(Qk|+ |ψ(Qk+1)|

)
(1)

where |ψ(Qk)| denotes the peak of the Fourier spectrum,
and |ψ(Qk+1)| its highest neighbor. For large N the er-

ror now decreases as 1/N 2. Data windowing can further
increase the accuracy of the Fourier analysis [3, 4].

From a harmonic analysis of x(n), the betatron phase
at the location of the pick up can be determined [5].
The oscillation detected by the kth BPM is xkm =
Ak cos(2πQxm + φ0,k), with m the turn number, and
Ak the measured amplitude. In the limit of many
turns, N , the betatron phase at the kth monitor is
φ0,k ≈ tan−1 (Sk/Ck), where Sk and Ck denote the
two Fourier sums Ck =

∑N
m=1 xkm cos(2πmQx), and

Sk =
∑N
m=1 xkm sin(2πmQx). The value of φ0,k is inde-

pendent of the amplitude Ak, which may depend on BPM
calibration. Phase advances (φ0,k − φ0,k−1) measured for
several beam currents may reveal the transverse impedance
distribution around the ring [6, 7], while maximising the
amplitude Ak ≈ √

C2
k + S2

k as a function of Qx is an al-
ternative way of determining the tune [7].

2 TWISS PARAMETERS
Often in a ring beta functions are measured by detecting the
shift of the betatron tune ∆x,y which results from a change
∆k [m−1] in the strength of a quadrupole magnet. The beta
function at the quadrupole is given by [8]

βx,y =
±2
∆k

(
1− cos(2π∆x,y)
tan(2πQx,y)

+ sin(2π∆x,y)
)

(2)

where Qx,y denotes the unperturbed tune, and the ±
subindex refers to the horizontal and vertical plane, respec-
tively. For small tune changes and far from integer or half
integer resonances (i.e., cot(2πQx,y) ≤ 1), this can be fur-
ther simplified to the well known βx,y ≈ ±4π ∆x,y/∆k.
A recent beta function measurement at the Fermilab Recy-
cler is depicted in Fig. 2 (left). The nonlinear dependence
is well described by the complete Eq. (2). Care has to be
taken that the applied change in quadrupole strength does
not alter the beam orbit (if the beam is not centered), since
otherwise closed-orbit variation at sextupole magnets may
affect the tune.

If multi-turn beam position monitors (BPMs) are avail-
able, a different and faster measurement extracts the beta
function from the betatron phase advance between every
three adjacent BPMs [10]. The phase advance φfi from
monitor i to monitor f , the optical functions β(s i) and
α(si), and the transport matrix elements Rkl between the
two monitors are related by

tanφfi =
R12

R11β(si)−R12α(si)
. (3)
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Figure 2: Optics tests. Left: betatron tunes in the Fermilab
Recycler Ring are plotted versus the strength of quadrupole
QT601 [9]. The measurements [plotting symbols] are com-
pared with theoretical predictions using either the exact
nonlinear dependence of Eq. (2) [solid lines], or its lin-
ear approximation [dotted lines], and taking the beta func-
tions at quadrupole QT601 to be equal to their design val-
ues. Right: difference orbit in RHIC is fitted to the online
model [11]. (Courtesy S. Peggs, 2000.)

Figure 3: Ratio of the horizontal beta function inferred
from phase advance measurements to the model beta func-
tion for the PEP-II High Energy Ring (HER): [left] with
all magnets at nominal strength; [right] for an increased
strength of a single quadrupole pair (QF5) by 0.15%.
(Courtesy M. Donald, 1998.)

The phase advance φfi can be inferred from a harmonic
analysis, and the coefficients Rkl are determined by the de-
sign optics assuming that the quadrupole magnets located
between the BPMs are at their nominal strength. For a set
of three BPMs, there are two independent equations of the
form (3), which may be solved for the two remaining un-
knowns α and β [10]. We denote the transport matrix from
BPM 1 to 2 by M and the matrix from BPM 1 to 3 by
N, their respective components by m11, m12, etc., and the
phase advance from BPM 1 to 2 (1 to 3) by φ21 (φ31). Ap-
plying Eq. (3) twice, the value of β at the first BPM is [10]:

β(s1) =
1/ tanφ21 − 1/ tanφ31

m11/m12 − n11/n12
(4)

Figure 3 shows an example, where this technique was used
to identify a quadrupole gradient error.

One can also infer the beta functions simultaneously at
all BPMs by measuring the average (static) orbit response
to two, or more, steering correctors [12]. We call x ia and
xib the orbit change measured at the ith BPM when de-
flections θa or θb are applied at corrector a or b. The beta

Figure 4: Beta function measurement at KEKB, based on
Eq. (5). Ratio of measured β function to the design value
is shown before [top] and after optics correction [bottom].
(Courtesy H. Koiso, 2000.)

function is computed from the relation [12]

βi =
4 sin2 πQ

sin2 ∆

(
x2
ia

βaθ2
a

+
x2
ib

βbθ2
b

− 2xiaxib cos∆√
βaβbθaθb

)
(5)

where ∆ = |µa − µb| is the phase advance between the
two correctors, which should not be a multiple of π. Prior
to applying this equation, the three quantities ∆, θa and θb
are determined by fitting a few BPM readings xja,b in the
vicinity of the correctors to the model optics. The com-
puted beta functions can be verified by exciting other cor-
rector pairs in different sections of the ring and comparing
the results. Figure 4 shows an example. Fitting difference
orbits to a betatron oscillation is a simpler variant; see Fig.
2 (right).

Yet another method to measure the beta functions exists
if BPM and steering corrector are at the same location. The
method consists in exciting a corrector, so that it deflects
the beam by ∆θ, and detecting the orbit change ∆xc.o. at
the associated BPM [13]. Assuming the beam energy is
unchanged, the beta function at the BPM is βBPM/cor ≈
2 tanπQ ∆xc.o./∆θ.

An elegant procedure is available to control the beta
function at a local symmetry point, such as the inter-
action point of a collider ring. A pair of symmetri-
cally placed quadrupoles is excited with opposite sign by
an amount ±∆k. The total tune shift is ∆Qtot =≈
∆k [< β+ > − < β− >] /(4π), where < ... > indicates
the average over the quadrupole, and the ± sign refers
to the left or right quadrupole. The optics is perfectly
adjusted, if ∆Qtot = 0. The beta function at the col-
lision (symmetry) point β∗ is a quadratic function of
the ratio η = 4π ∆Qtot/∆k of the form [14] β∗ =
β∗

design

(
1 + aopticsη

2
)
, where β∗

design is the nominal beta
function, and the coefficient aoptics can be obtained from
an optics calculation.

In a transport line (or linac) the beta function does not
only depend on the beam-line elements but also on the in-
coming beam parameters. To match the beam line optics
to the incoming beam, two procedures are frequently used:
multi-wire (or multi-screen) beam-size measurements and
quadrupole scans. The mathematical algorithm for either
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case expresses the transverse beam sizes σ
(l)
x , corrected

for dispersion and energy spread, in terms of the α and
β functions and the emittance at an upstream location s0.
To simplify the notation, we introduce a vector contain-
ing the n measured beam sizes Σ = (σ(1)2

x , ..., σ
(n)2
x ), the

3-component vector of unknown beam parameters at loca-
tion s0, o = (β(s0)ε,−α(s0)ε, γ(s0)ε), and the n× 3 ma-

trix B whose ith row reads Bi = (R(i)2
11 , 2R(i)

11R
(i)
12 , R

(i)2
12 ),

where Rkl is the (k, l) transport matrix element from s0

to the location of the ith beam-size measurement. The
equation connecting Σ, B and o is Σx = B · o, with
the least-square solution o = (B̂T · B̂)−1 · B̂T · Σ̂x,
where Σ̂(l)

x = Σ(l)
x /σ

Σ
(l)
x

, B̂(l)
li = B(l)

li /σΣ
(l)
x

, and σ
Σ

(l)
x

the rms error of Σ(l)
x . The errors of the parameters o are

σoi =
√
(B̂T · B̂)−1)ii. The three quantities ε, β, and

α are inferred from ε =
√
o1o3 − o2

2, β = o1/ε, and
α = −o2/ε. The deviation of β, α, and γ from the de-
sign parameters β0, α0 and γ0 is characterised in terms
of a so-called ‘Bmag’ (β matching) parameter [15, 16]:
Bmag = (βγ0 − 2αα0 + γβ0) /2. If an unmatched beam
is injected into a ring or linac, it will filament until the beam
distribution approaches a shape that is matched to the lat-
tice. After complete filamentation, the emittance is given
by the product of Bmag and the initial ε. Once the values
of β and α are known, quadrupole magnets can be adjusted
in order to match the optical functions at a selected point
to their design value, so that Bmag=1; see, e.g., Ref. [17].
In addition, the procedure provides an absolute measure of
the emittance. Finally, groups of magnets that are com-
bined into linear [18] or nonlinear [19] orthogonal tuning
‘knobs’ allow for an empirical optics correction.

3 LINEAR COUPLING
Linear coupling of horizontal and vertical betatron motion
may decrease the dynamic aperture and, in electron col-
liders or light sources, it degrades the luminosity or bril-
liance. A standard method to globally correct the linear
betatron coupling in a storage ring [20, 21] is to minimise
the distance κ− of closest tune approach, by varying skew-
quadrupole correctors. The coupling strength κ− can also
be inferred from the modulation amplitude and modulation
period in the beam response to a kick [20, 21]. In addition,
to achieve optimum vertical beam emittances in electron
or positron rings, it often is necessary to identify and cor-
rect local coupling sources. One approach here is to mea-
sure the cross-plane orbit response, e.g., the vertical orbit
changes due to horizontal closed orbit bumps in different
sections of the ring [22].

4 NONLINEAR OPTICS
Nonlinear magnetic fields induce a tune shift with ampli-
tude, and they excite higher-order resonances, which are
visible as additional lines in the tune Fourier spectrum. The
resonance kQx + lQy = p (k, l, and p integers) gives rise
to lines at (k ± 1)Qx + lQy in the horizontal spectrum.
From amplitude, phase and frequency of the various spec-
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Figure 5: Detuning and first-order resonance driving terms,
measured at the SPS [25]. Shown are the betatron tune [top
left] and the relative amplitude of several resonance lines
with respect to the main tune line [other] as a function of
the oscillation amplitude. Plotting symbols are experimen-
tal data; lines are from a tracking simulation. 170 turns
were sampled per point. (Courtesy F. Schmidt, 2000.)

tral lines the dominant nonlinearities affecting the beam
motion can be reconstructed [23,24]. An example is shown
in Fig. 5. The nonlinearities may also be probed by adia-
batically exciting large coherent betatron oscillations using
an ac dipole [26]. This method will be tested at RHIC.

5 DISPERSION
In most storage rings the dispersion function is inferred
from the orbit change ∆x induced by a shift in rf fre-
quency. A frequency shift ∆frf changes the relative energy
by δ = −(αc − γ−2)−1 ∆frf/frf ≈ −1/αc ∆frf/frf .
The last approximation ignores the change in particle ve-
locity and is valid for electron rings. The dispersion is
η(s) =

(
γ−2 − αc

)
∆x(s)/(∆frf/frf). As an illustration,

Fig. 6 (left) shows a dispersion measurement at the PEP-
II HER. At LEP, a different ‘dynamic’ dispersion mea-
surement has been applied [5], where the phase of the rf
voltage is harmonically modulated at a frequency close to
the synchrotron frequency and the frequency component
of the induced (resonant) orbit variation at the synchrotron
frequency is used to infer the dispersion function at each
BPM. If the dispersion at the cavities is nonzero, the dy-
namic measurement will give a result different from the
static measurement [27]. Similar dynamic schemes have
been tested at the SLC and ATF damping rings. In both
these rings, a longitudinal oscillation is induced by a shock
excitation: either a sudden step-change to the rf voltage (at
the SLC [28]) or a fast phase jump (at the ATF [29]). The
two methods can also give spurious results.

In a transport line, or linac, the linear and nonlinear dis-
persion at location s is written as ∆x(s) = R16(s)δ +
T166(s)δ2 + U1666(s)δ3 where the 2nd and 3rd order con-
tributions are characterised byT166(s) andU1666(s). These
terms can be measured via a shift in beam energy. Re-
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Figure 6: Left: Vertical dispersion measured via ±5-kHz
rf frequency ramp at the KEK ATF Damping Ring be-
fore [top] and after correction [bottom]; a dispersion of
η = 5 mm corresponds to an orbit change of ∆x ≈ 15 µm.
(Courtesy J. Urakawa, 2000). Right: Change of beam en-
ergy, E, as a function of the rf frequency, f rf , in LEP [35].
Only the last four digits of the rf frequency are shown (the
nominal value is frf = 352 254 170 Hz). Strong spin res-
onances are indicated by dotted lines. From this measure-
ment the momentum compaction factor was determined to
be (1.86±0.02)×10−4, comparing well with the calculated
value of 1.859× 10−4. (Courtesy R. Assmann, 1998).

Figure 7: Third order dispersion in the SLC ring-to-linac
transfer line (RTL) [30]: Left: BPM reading vs. beam en-
ergy. Right: 3rd order dispersion inferred for all BPMs in
the RTL and in the early linac; the 3rd order dispersion in
the linac is fitted to calculate the magnitude of the U1666

and U2666 matrix elements. (Courtesy P. Emma, 1998.)

sults are illustrated in Figure 7 for the North ring-to-linac
transfer line (RTL) of the SLC. The left picture shows the
beam position at one of the RTL BPMs as a function of the
beam energy. The cubic dependence indicates a large 3rd
order dispersion, whose value was obtained from a poly-
nomial fit. Plotted in the right picture is the 3rd order dis-
persion function so determined as a function of position
along the RTL and in the early part of the SLAC linac. In
1991 two octupole magnets were installed in order to can-
cel the U1666 term. The optimum octupole strength, found
by minimising the linac emittance as a function of the oc-
tupole excitation, and the corresponding U1666 value are
in good agreement with the 3rd order dispersion inferred
from the BPM readings [1, 30]. Also linear (and second
order) dispersion requires correction [17]. In a linear col-
lider, the beam dispersion, i.e., the energy-position correla-
tion within the bunch, must be controlled. This can be done
using (tilted) wire scanners at dispersive locations [31].
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Figure 8: Left: Qs as function of total rf voltage in LEP; the
two curves are fits to the 640 µA and 10 µA data. The dif-
ference due to parasitic mode losses is clearly visible [36].
Right: beam energy fitted from Qs vs. Vrf measurement
as a function of rf voltage calibration factor g; the dotted
line indicates the known energy value [36]. (Courtesy A.-
S. Müller, 2000).

6 LONGITUDINAL OPTICS
If the rf voltage is well known, the momentum compaction
factor αc can be inferred directly from the synchrotron
tune. For an electron ring one can remove the dependence
on the rf voltage by also measuring bunch length, quan-
tum lifetime, and/or the rms energy spread [32]. At the
KEKB linac, a streak camera synchronised with the injec-
tor rf system was used to monitor the electron path length
as a function of energy, and, thereby, the first and second
order momentum compaction factor [33]. For unbunched
proton beams, the momentum compaction factor, α c =
−(∆B/B)/(∆T/T ), follows from the change in revolu-
tion period T with bending field B, which can be detected
by a Schottky monitor [34]. Extremely accurate measure-
ments of the momentum compaction were performed at
LEP. Here the beam energy is determined using resonant
depolarisation. The resonant spin tune ν0 depends linearly
on beam energy, ν0 = aeγ = E [MeV]

440.6486(1) [MeV] , with ae
the electron anomalous magnetic moment. Beam-energy
measurements for different rf frequencies determine α c;
see Fig. 6 (right). Measuring the synchrotron tune Q s as
a function of rf voltage Vrf , for various beam currents, and

fitting to Q2
s = αCh

2π

(
g2e2V 2

rf

E2
c

+Mg4V 4
rf − 1

E2
c
Ũ2

0

)1/2

,

where the V 4
rf term accounts for the rf distribution, yields

the longitudinal loss factor as Ũ0; see Fig. 8 (left). From
this fit also αc was determined with a precision better than
10−3 [36]. In addition, if the beam energy is known at one
point, e.g., on a spin resonance, the Qs vs. Vrf curve can
calibrate the rf voltage (Fig. 8 right) [36].

7 CHROMATICITY
The chromaticity is normally determined by measuring the
tune shift as a function of the rf frequency f rf .: ξx,y =
∆Qx,y

∆p/p =
(
γ−2 − αc

) ∆Qx,y

∆frf/frf
. An example from LEP is

shown in Fig. 9 (left).
A fast chromaticity measurement was developed at

CERN in preparation for LHC [37]. After applying a
transverse kick, the betatron phase shift ∆φβ between
bunch head and tail, separated in time by ∆τ , is mea-
sured over n turns. The chromaticity follows from ξx,y =
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Figure 9: Chromaticity measurements. Left: Horizontal
tune as a function of the rf frequency in LEP. Plotting sym-
bols with error bars are the data. The dashed line is the lin-
ear chromaticity as calculated from tune measurements at
∆frf = ±50 kHz. (Courtesy H. Burkhardt, 1998.) Right:
Natural chromaticity in the PEP-II HER. Shown is the hor-
izontal tune vs. the relative change in the main dipole field.
(Courtesy U. Wienands, J. Seeman et al, 1998.)

− (
αc − γ−2

)
∆φβ(n)/ [Qx,yω0 ∆τ(cos(2πnQs)− 1)].

Another interesting optics test is to measure the natural
chromaticity, which is the chromaticity the ring would have
without sextupole magnets, by detecting the variation of the
betatron tune as a function of the bending field. Since the
rf frequency is unchanged, the orbit in the sextupoles re-
mains approximately constant. The absolute beam energy
changes in proportion to the field, and the natural chro-
maticity ξnatx,y is given by ξnatx,y ≈ ∆Qx,y/(∆B/B). A
typical result is depicted in Fig. 9 (right). Beta functions
measured at different rf frequencies reveal the local chro-
maticity. In addition, the tunes measured for several sex-
tupole strengths as a function of rf frequency follow curves
which approximately intersect in a single point. At this
‘central rf frequency’ the orbit on average passes through
the center of all sextupoles [38, 39]. This is useful to mon-
itor circumference and beam energy [40, 41].

8 DATA ANALYSIS TECHNIQUES
If the beam response to a large number of steering correc-
tors is measured at all BPMs, many parameters can be ad-
justed in an off-line accelerator model so as to best repro-
duce the observed response matrix. A good example is the
LOCO code [42].

Singular value decomposition (SVD) is a powerful tool
with a broad range of applications, such as reducing the
strengths of orbit correctors [43], creating orthogonal tun-
ing knobs [44], or analysing BPM data [45]. Least-square
fits do not always give correct results, and sometimes they
must be substituted by a principal-axes transformation [46].

Model-independent analysis [45] extracts temporal and
spatial patterns from an arbitrary series of beam data, iden-
tifies the physical variables contributing to beam motion,
and, e.g., was used to localise linac wake-field sources.

9 SUMMARY
Many procedures have been developed for verifying or up-
dating the accelerator model.
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