BEAMLINE MODEL VERIFICATION USING MODEL INDEPENDENT
ANALYSIS*

J. Irwin and Y.T. Yan, SLAC, Stanford, CA 94309, U.S.A.

Abstract in the vertical output from a horizontal beam displacement,

Model Independent Analysis (MIA) has previously em—fé‘;,;ri;(r,hls information can be placed in a 4x4 symplectic

ployed statistical methods to reveal sub-resolution cor-

related modes present in pulse-by-pulse beam-position- ~ _ (G 0 T) with G = <gz 9zy>
monitor (BPM) measurements at the SLAC linac [1]. This 0 G Oye 9y )’
paper describes an extension of MIA to verify local Iinea(m1ere the symplectic identity is given by

and nonlinear properties of linac and storage ring lattices.

Measurements and analysis of the LER ring at PEP-II are J= ( 0 l)

presented as an example. -1 0)"~

2.2 Nonlinear errors

1 INTRODUCTION
- o . Assuming that nonlinear distortions do not depend on
To utilize precision beam measurements to verify a beampam slope, they will have Lie generators of the form
line model one must identify and remove relatively largg, — _/¢ (z,y) — y'f,(2,y), producingAz(z,y) =
variations in BPM offsets, gains, cross-plane couplings; (; ) + ... andAy(z,y) = £,(x,y) + ... . Any nonlin-

and nonlinear pin-cushion distortions. In section 2 it iy, shape can be produced. The map outputfandy’ is
proven that all such BPM attributes may be representggelevant because these are not measured.
by symplectic maps. In section 3 it is shown that given

the orbit data for four independent excitations of a beam- 3 LINEAR GREEN’'SFUNCTIONS

line one can use symplectic methods to extract the four

Green's functions between BPM outputs. In the lineallhe previous section implies that maps between BPM out-
case the Green’s functions are specified by values f@uts can be assumed symplectic, being the composition of
Ri5, R14, R32, and R34. Section 4 establishes that even in3 symplectic maps: the inverse of the map from the be-
the case of single-view BPMs this is sufficient informatiorginning of the lattice section to the initial BPM output, the
to identify the gain and cross-plane-coupling BPM errorsnap through the lattice section, and the map from the end
as well as one normal and one skew attribute of the lineaf the lattice section to the final BPM output.

lattice between each BPM pair. In the case of double-view Suppose one has the BPM measurements for 4 linear in-
BPMs there is sufficient information to determine two nordependent modes of a beamline. Though x’ and y’ are not
mal and two skew lattice attributes. Section 5 describes tlmeeasured they exist, and at @& andb* BPM output one

use of MIA to extract precision excitation modes from ob-could conceptually form a matrix consisting of the phase-
servations of a shaken beam in a storage ring, and sectiosjgace coordinates for the four independent excitations: eg.
presents a first attempt to use this method to verify the lat-

tice of the low-energy ring (LER) of PEP-II. In section 7 it 33/% 33/% 5'3/% 37/51;
is shown how these methods may be extended to determine go_ | ¥1 T2 T3 Iy
nonlinear BPM errors and nonlinear lattice parameters. yi o Y3 ys o yd
yit oyt ys g

) Since the phase-space coordinates ahdb are related

2 SYMPLECTIC BPM-ERROR MAPS by a symplectic mapR’?, one hasz® = R Z%. The sym-

2.1 Linear erors plecticity of R meanskte” JRb — J, and it follows that

. . . . bT b oT a
The BPM offsets may be removed by observing, and Ia’[etpe anti-symmetric ma‘?"? z : JZ 22 1S
; . a constant around the ring, even in a strongly coupled lat-
subtracting, the average BPM measurement during unex- . .
. . . . ice. The 6 independent elements(@fare the generaliza-
cited operation. Assuming that a change in the beam’s T A .
. ; tfion of the Wronskian in 1 d.o.f. SincB* has an inverse
slope at a BPM does not effect its output, the linear er;

rors can be represented by four numbers: the horizontal a%‘e 4 modf;_%re .indepenollent), Ieft;riultiplxthe expression
vertical gain,g, andg,, the change in the horizontal out- " @ by Z , right-multiply by 2~ and invert to get

. . —1maT _ _ —1 i i _
put from a vertical beam displacemeftt,, and the change 2@ 2°" = —J, whereQ"" is an anti-symmetric ma
trix whose elements are a permutation of the elemend} of
*Work supported by DOE contract DE-AC03-76SF00515. divided by its determinant.
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Now suppose there are horizontal-view BPMsiand unknown skew cross-plane coupling. Since there are four
¢ and vertical-view BPMs ab andd. Define 4x4 matri- new equations, there remain two relationships that can be
ces that contain the modes as measured at these BPMs andd to verify the lattice. Typically one has a BPM at ev-
contain the map elements fraarto the other locations. ery main quadrupole or half-cell. If there is a sextupole

in this half-cell, then the equations can determine the hor-

ZL’Z 35%1 x% 35%1 izontal and vertical position of the sextupole, relative to
g Y Y2 Y Ya ’ the beam. In other words, since in addition to determin-
37;1; 5’32 5’35 f% ing BPM parameters, we typically have only 2 (or 4) rela-
Yi Y2 Ys Y4 tionships per beamline interval, we can not determine the 6
1 0 0 0 possible parameters of an arbitrary symplectic map. How-
R Rl R: RY: R ever, many properties of the beamline interval are not in
R= R?% R?é R?é ?Z - doubt, such as the longitudinal position of elements and in-
Rds Rds Rda Ria dividual strengths of el_ements on strings. One makes the
most of such information, limiting the unknowns to less
Then Z = RZ°. Pre-multiplying Z“Qflg“T = —J than one normal and one skew parameter per BPM in the
byAR,Aand post-multiplying byR” yields ZQ 1ZT = case of single-view, or two normal and two skew parame-
—RJRT. ters in the case of double-view BPMs.

The elements aR.JRT are Green’s function elements of
the various maps betweenb, c andd, and the components
of this matrix equation have the extremely simple form

> @yl — 25yh)Q = Ry, (1)

i<J In linacs there is often enough incoming jitter in the beam
The RHS is always a Green's function elemeni® Mmeasure and identify betatron modes. In rings Fhis is
(Ry2, Rss, Ri4, OF Rsy): the first index, is 1 or 3 usually not the case, and one must introduce excitation.
angShakers are typically used to measure tunes. In PEP-II
it is relatively easy to shake the beam to amplitudes of a

5 OBTAINING MODESIN RINGS

according to whether "b” is horizontal or vertical,

the second indexn is 2 or 4 according to whether "a” is g e
horizontal or vertical. Note that in this equation faps  fewW mm. Since the BPM resolution is a fqwn.s one ob-

only measurements at and b enter: what's happening tgins information wit'h parts per thousand accuracy poten-
at ¢ and d is actually irrelevant. The amplitude andi@!- The beam profile does not seem to be noticeably al-
orthogonality of the 4 modes being used enters throudf"ed Py shaking, so one avoids the decoherence inherent
Q. The result in eq. (1) is a tidy expression for the local” enlarged beams. To obtain these amplitudes, one must

linear Green’s function matrix elements between any twgnake at a frequency close to the betatron frequency. Thus
locations in the beamline. the horizontal shaker and vertical shaker must operate at

different frequencies. To determine higher order informa-

tion, it is necessary to have enhanced horizontal and verti-
4 VERIFYING THE LINEAR MODEL cal amplitudes simultaneously. Having collected data from

Not all of these Green’s function equations can be indepef?any consecutive turns for an ensemble of BPMs, an SVD
dent. Since there are 4 measurements at each single-via@lysis is used to identify correlated modes. Typically 2
BPM, 1 for each of the 4 modes, one might expect eachetatron modes in the shaken plane are very large and all
BPM to be involved in 4 independent equations. Exceg?ther modes are close to the noise floor. The eigenvalues
for BPMs at the end and beginning of a beamline, this is irPf these other modes may be set to zero, and the SVD de-
deed true: there are 2 independent "normal” measuremer@@mposition re-multiplied to obtain a noise-reduced data
and 2 independent "skew” measurements. For double-vielatrix. A linear portion of the lattice can now be decom-
BPMs one expects eight relationships. One can show th@sed in an SVD product, to identify the initial amplitude
all Green’s function elements may be expressed in tern®$ the two betatron modes on each turn. These amplitudes
of elements between neighbors and next-nearest neighbdta be further filtered using a hypothesis on the form of the
For example, for J as above, and "B” the Green's functioft!rn-to-turn map. One obtains highly refined initial ampli-

sub-matrix of tude data. These initial amplitudes and their products can
now be used in conjunction with the original data matrix to
R— ( A B ) project out high quality eigenmodes (resolution now going

~\C D)~ as+/P, the number of pulses). Thus one obtains response

= vectors around the ring to any amplitude product. The local
then, Bde = pdbpedb~'pea _ pgdegeb™ " pha \where values of these vectors are precisely the coefficients of the
a, b, c andd are four consecutive double-view BPMs. one-turn map from the linear starting region to each BPM
The introduction of an additional single-view BPM im- location. They may be used to determine the linear and
plies the introduction of an unknown normal gain and amonlinear local Green’s functions.
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6 APPLICATION TO PEP-II

0.05
We have tried some preliminary applications of least squar

fitting of Eq. 1 to the PEP-Il Low Energy Ring (LER) inor- s 0/‘\/\.\//\,/‘\,,§

der to find magnet errors. The fitting variables are the BPN & stars: assigned errors

Iine§: fitted errors

errors and the magnet errors by inserting, at each loce % 4 6 8 10 12
tion of the quadrupole or the sextupole (for misalignment). 15 15

a varying normal quad and a varying skew quad. Sinct .

most of the PEP-Il BPMs are single-view BPMs, in order & [ 0 i EEE PR
that BPM errors can also be part of the fitting, we make ¢ 05

modification of Eq. 1 by transforming it into the measure- o 14 16 18 20 22 0524 % 28 30 %

ment frame such that the LHS is kept the same and:the
andy’s stand for the measured coordinates which include > o . . ., .« <+« o o e
BPMs error effect while the RHS is modified such that I

R15, R32, R14, and R34 are replaced withiR 12, R32, R14, -05 -05

34 36 38 40 42 44 46 48 50 52 54
andR34 , Where fitting variable #

fitting variable #  yan, 6.20

Riz = g2 R129® + 9331493y + ggyng; + HﬁyR3493y, Figure 1: Magnet error fitting for PEE—II LER.. The orbit
data are obtained from computer particle tracking.

Rsz = gy Rs2g% + gy Rsabs, + 6, Ri2g% + 05, R1465,,

Rus = ggRMgZ n 933129595 n HZyR34gZ n 92yR329§I, ?Ctecllj)rc;t:glr; plots, due that the invariants are not calculated
_ b a_ b a b a _, pb a Figure 2 shows the fitted results from measurement (or-

Ras = gyltsagy + 9y Ro20y, + 0ypFagy + 0y, 120y, bit data obtained from buffered data acquisition of the PEP-
The first step we do is to get the 4 independent orbitd LER machine) forR» (top) andR34 (bottom) in the

and calculate the invariants so that the LHS of Eq. 1 cameasurement frame for the same arc section as in Fig. 1.

be calculated. We would get 2 sets (x data and y data) dfote that in the arc section, although the lodah’s are

about 2000 turns of orbit data for all BPMs from excitationthe same (a constant) and so do the Id@a/’s, the modi-

of horizontal (x) motion and another 2 sets of about 200fled R 1»’s andRs4’s in the measurement frame include the

turns of orbit data from excitation of vertical (y) motion. BPM errors and so are not constants.

We then perform Fourier transformation (if necessary) tc

cut the low-frequency noise and then the singular value de tars: measured

composition (SVD) to get the 2 betatron modes (the larges 245 lines: model

two modes) for each of the 4 sets of data to formthe 4in- o, | —"

dependent orbits. o
The second step we do is to get the local transfer matri ~ 2+4]

25

ces and then insert a matrix of the form 202, : . : : . . : s
1 0 0 0 X view BPM #
28
wm 1 ¢ 0 ol
0 0 1 0 25l —
s 0 —gn 1 3 o5 /

at each quadrupole or sextupole location, whgrandg,

are variables representing the normal and skew quad erra

to be fitted. Besides the constraints from Eq. 1, we furthe ! 2 8 48 6 7 8 °

impose constraints that requige’s andg,’s to be close to Y ViewBEN# oo

1 andd,, andd,, to be close to O for all BPMs in the least

square fitting (note that we have removed the bad BPMggure 2: Magnet error fitting for PEP-II LER. The orbit

during the process of getting the 4 independent orbits). data are obtained from buffered data acquisition of the LER
Figure 1 shows a fitted results from simulation (orbifmachine.

data obtained from numerical trackings) with 5 magnet er-

rors purposely imposed for a portion (covering 21 BPMs)

of the arc section after the injection. The BPM errors are 7 NONLINEARITIES

randomly generated. The top plot shows that the magnghe result of the MIA orbit determination may be written

errors (normal quad or skew quad errors) are fitted pretty . .

well even though the BPM errors, particularly the coupled b(z) = Z Tp2"

errorsé,, andd,,, are not perfectly fitted, as shown on it
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andz™ = g g/Me yvyMy' | whereb is the vector of BPM
readings around the ring;; are the values of the” mode
around the ring, and” is the amplitude on any given pulse
of the 7* mode. For the linear case only thé& order
terms are retained, and the four linearare the values of
the four modes used in section 3 to deduce eq. 1 for the
local Green’s functions. To deduce the nonlinear Greens
function, replace: by z, + ¢, wherez, is assumed small,
and( is an infinitesimal that is retained to first order only.

Looking at this expression as a function @the form is
similar to the linear case with modes

T (20) = (,?—b(zo)

2k

By stepwise adding terms of higher order one can deter-
mine each of the higher order contributions to the Green’s
function. To illustrate how this works consider tB&?-
order terms for a single variable. In addition to the con-
stant termg; (z,) will have linear terms iz, andz! . Us-
ing Eg. 1 these linear terms contribute terms to the local
Green’s function linear iz, andx},.

On the other hand, the local map has the form:
a? = RY2% + RYa' + R 29% + RV, a%2'® + RYY,2'0”
Taking the derivative with respect to x’ gives the Green’s

function
axb ba ba ,.a ba .la
e Ry5 + Ry}5x% + 2R 5,2,

Assuming that the linear lattice was successfully verified,
the values oft® andz’® are determined as linear combina-
tion of z, andz!. The two coefficients?;;» andR;»» are
determined by comparison with the 2 new contributions to
the Green'’s function.
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